Auteurs : ... (Auteur de la Conférence)
... (Editeur )
Résumé :
The Liouville function $\lambda(n)$ takes the value +1 or -1 depending on whether $n$ has an even or an odd number of prime factors. The Liouville function is closely related to the characteristic function of the primes and is believed to behave more-or-less randomly.
I will discuss my very recent work with Radziwill, Tao, Teräväinen, and Ziegler, where we show that, in almost all intervals of length $X^{\varepsilon}$, the Liouville function does not correlate with polynomial phases or more generally with nilsequences.
I will also discuss applications to superpolynomial number of sign patterns for the Liouville sequence and to a new averaged version of Chowla's conjecture.
Keywords : Liouville function; higher order uniformity; Chowla's conjecture
Codes MSC :
11N25
- Distribution of integers with specified multiplicative constraints
11N64
- Other results on the distribution of values or the characterization of arithmetic functions
11B30
- Arithmetic combinatorics; higher degree uniformity
|
Informations sur la Rencontre
Nom de la rencontre : Additive Combinatorics / Combinatoire additive Dates : 07/09/2020 - 11/09/2020
Année de la rencontre : 2020
URL Congrès : https://conferences.cirm-math.fr/2228.html
DOI : 10.24350/CIRM.V.19653803
Citer cette vidéo:
(2020). Higher order uniformity of the Möbius function. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19653803
URI : http://dx.doi.org/10.24350/CIRM.V.19653803
|
Voir aussi
Bibliographie
- MATOMÄKI, Kaisa, RADZIWIŁŁ, Maksym, TAO, Terence, et al. Higher uniformity of bounded multiplicative functions in short intervals on average. arXiv preprint arXiv:2007.15644, 2020. - https://arxiv.org/abs/2007.15644