F Nous contacter

Multi angle

H 1 Stability of propagation fronts in congestion models

Auteurs : ... (Auteur de la Conférence)
... (Editeur )

    Loading the player...

    Résumé : The purpose of this talk is to present two 1d congestion models: a soft congestion model with a singular pressure, and a hard congestion model in which the dynamic is different in the congested and non-congested zone (incompressible vs. compressible dynamic). The hard congested model is the limit of the soft one as the parameter within the singular presure vanishes.
    For each model, we prove the existence of traveling waves, and we study their stability. This is a joint work with Charlotte Perrin.

    Keywords : congestion problem; free boundary; stability of traveling waves

    Codes MSC :
    35B35 - Stability of solutions of PDE
    35Q35 - PDEs in connection with fluid mechanics
    35R35 - Free boundary problems

      Informations sur la Vidéo

      Langue : Anglais
      Date de publication : 10/11/2020
      Date de captation : 27/10/2020
      Collection : Research talks ; Partial Differential Equations
      Format : MP4
      Durée : 00:54:23
      Domaine : PDE
      Audience : Chercheurs ; Doctorants , Post - Doctorants
      Download : https://videos.cirm-math.fr/2020-10-27_Dalibard.mp4

    Informations sur la rencontre

    Nom de la rencontre : Vorticity, Rotation and Symmetry (V) - Global Results and Nonlocal Phenomena / Vorticité, rotation et symétrie (V) - Résultats globaux et phénomènes non locaux
    Dates : 26/10/2020 - 30/10/2020
    Année de la rencontre : 2020
    URL Congrès : https://conferences.cirm-math.fr/2166.html

    Citation Data

    DOI : 10.24350/CIRM.V.19678503
    Cite this video as: (2020). Stability of propagation fronts in congestion models. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19678503
    URI : http://dx.doi.org/10.24350/CIRM.V.19678503

    Voir aussi


    1. DALIBARD, Anne-Laure et PERRIN, Charlotte. Existence and stability of partially congested propagation fronts in a one-dimensional Navier-Stokes model. arXiv preprint arXiv:1902.02982, 2019. - https://arxiv.org/abs/1902.02982