Auteurs : Hajdu, Lajos (Auteur de la Conférence)
CIRM (Editeur )
Résumé :
Exponential Diophantine equations, say of the form (1) $u_{1}+...+u_{k}=b$ where the $u_{i}$ are exponential terms with fixed integer bases and unknown exponents and b is a fixed integer, play a central role in the theory of Diophantine equations, with several applications of many types. However, we can bound the solutions only in case of k = 2 (by results of Gyory and others, based upon Baker's method), for k > 2 only the number of so-called non-degenerate solutions can be bounded (by the Thue-Siegel-Roth-Schmidt method; see also results of Evertse and others). In particular, there is a big need for a method which is capable to solve (1) completely in concrete cases.
Skolem's conjecture (roughly) says that if (1) has no solutions, then it has no solutions modulo m with some m. In the talk we present a new method which relies on the principle behind the conjecture, and which (at least in principle) is capable to solve equations of type (1), for any value of k. We give several applications, as well. Then we provide results towards the solution of Skolem's conjecture. First we show that in certain sense it is 'almost always' valid. Then we provide a proof for the conjecture in some cases with k = 2, 3. (The handled cases include Catalan's equation and Fermat's equation, too - the precise connection will be explained in the talk). Note that previously Skolem's conjecture was proved only for k = 1, by Schinzel.
The new results presented are (partly) joint with Bertok, Berczes, Luca, Tijdeman.
Keywords : exponential Diophantine equations; Skolem's conjecture
Codes MSC :
11D41
- "Higher degree equations; Fermat's equation"
11D61
- Exponential equations
11D79
- Congruences in many variables
|
Informations sur la Rencontre
Nom de la rencontre : Jean-Morlet Chair 2020 - Conference: Diophantine Problems, Determinism and Randomness / Chaire Jean-Morlet 2020 - Conférence : Problèmes diophantiens, déterminisme et aléatoire Organisateurs de la rencontre : Rivat, Joël ; Tichy, Robert Dates : 23/11/2020 - 27/11/2020
Année de la rencontre : 2020
URL Congrès : https://www.chairejeanmorlet.com/2256.html
DOI : 10.24350/CIRM.V.19687703
Citer cette vidéo:
Hajdu, Lajos (2020). Skolem's conjecture and exponential Diophantine equations. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19687703
URI : http://dx.doi.org/10.24350/CIRM.V.19687703
|
Voir aussi
-
[Virtualconference]
Improved cap constructions, and sets without arithmetic progressions
/ Auteur de la Conférence Elsholtz, Christian.
-
[Virtualconference]
On S-Diophantine Tuples
/ Auteur de la Conférence Ziegler, Volker.
-
[Virtualconference]
Poisson-generic points
/ Auteur de la Conférence Weiss, Benjamin.
-
[Virtualconference]
Classification and statistics of cut-and-project sets
/ Auteur de la Conférence Weiss, Barak.
-
[Virtualconference]
On binary quartic Thue equations and related topics
/ Auteur de la Conférence Walsh, Gary.
-
[Virtualconference]
Multidimensional continued fractions and symbolic codings of toral translations
/ Auteur de la Conférence Thuswaldner, Jörg.
-
[Virtualconference]
On generalised Rudin-Shapiro sequences
/ Auteur de la Conférence Stoll, Thomas.
-
[Virtualconference]
Pseudorandomness at prime times and digits of Mersenne numbers
/ Auteur de la Conférence Shparlinski, Igor.
-
[Virtualconference]
Zaremba's conjecture and growth in groups
/ Auteur de la Conférence Shkredov, Ilya.
-
[Virtualconference]
Large values of the remainder term of the prime number theorem
/ Auteur de la Conférence Pintz, Janos.
-
[Virtualconference]
Number of solutions to a special type of unit equations in two unknowns
/ Auteur de la Conférence Pink, István.
-
[Virtualconference]
Bertini and Northcott
/ Auteur de la Conférence Pazuki, Fabien.
-
[Virtualconference]
Dynamical irreducibility of polynomials modulo primes
/ Auteur de la Conférence Ostafe, Alina.
-
[Virtualconference]
Diophantine exponents, best approximation and badly approximable numbers
/ Auteur de la Conférence Moshchevitin, Nikolay.
-
[Virtualconference]
Some interactions between number theory and multifractal analysis
/ Auteur de la Conférence Martin, Bruno.
-
[Virtualconference]
The sum-of-digits function in linearly recurrent number systems and almost primes
/ Auteur de la Conférence Madritsch, Manfred.
-
[Virtualconference]
Fibonacci numbers and repdigits
/ Auteur de la Conférence Luca, Florian.
-
[Virtualconference]
Equidistribution of roots of unity and the Mahler measure
/ Auteur de la Conférence Habegger, Philipp.
-
[Virtualconference]
Effective finiteness results for diophantine equations over finitely generated domains
/ Auteur de la Conférence Györy, Kalman.
-
[Virtualconference]
Constructing abelian extensions with prescribed norms
/ Auteur de la Conférence Frei, Christopher.
-
[Virtualconference]
$D(n)$-sets with square elements
/ Auteur de la Conférence Dujella, Andrej.
-
[Virtualconference]
(Logarithmic) densities for automatic sequences along primes and squares
/ Auteur de la Conférence Drmota, Michael.
-
[Virtualconference]
Modularity of the q-Pochhammer symbol and application
/ Auteur de la Conférence Drappeau, Sary.
-
[Virtualconference]
Higher moments of primes in intervals and in arithmetic progressions, II
/ Auteur de la Conférence De la Bretèche, Régis.
-
[Virtualconference]
The Rudin-Shapiro function in finite fields
/ Auteur de la Conférence Dartyge, Cécile.
-
[Virtualconference]
Independence of actions of (N,+) and (N,×) and Sarnak's Möbius disjointness conjecture
/ Auteur de la Conférence Bergelson, Vitaly.
-
[Virtualconference]
On some diophantine equations in separated variables
/ Auteur de la Conférence Bérczes, Attila.
Bibliographie
- HAJDU, L. et TIJDEMAN, R. Skolem's conjecture confirmed for a family of exponential equations. Acta Arithmetica, 2020, vol. 192, p. 105-110. - http://dx.doi.org/10.4064/aa190114-25-2
- BERTÓK, Csanád et HAJDU, Lajos. A Hasse-type principle for exponential Diophantine equations and its applications. Mathematics of Computation, 2016, vol. 85, no 298, p. 849-860. - http://dx.doi.org/10.1090/mcom/3002
- BERTÓK, Csanád et HAJDU, Lajos. A Hasse-type principle for exponential Diophantine equations over number fields and its applications. Monatshefte für Mathematik, 2018, vol. 187, no 3, p. 425-436. - https://doi.org/10.1007/s00605-018-1169-8