m

F Nous contacter


0
     
Multi angle

H 1 Coevolution of habitat use in stochastic environments

Auteurs : Schreiber, Sebastian J. (Auteur de la Conférence)
CIRM (Editeur )

    Loading the player...

    Résumé : Species live and interact in landscapes where enviornmental conditions vary both in time and space. In the face of this spatial-temporal heterogeneity, species may co-evolve their habitat choices which determine their spatial distributions. To understand this coevolution, I present an analysis of a general class of stochastic Lotka-Volterra models that account for space implicitly. For these equations, a (stochastic) coevolutionarily stable strategy (coESS) is a set of habitat choice strategies for each species that, with high probability, resists invasion attempts from mutant subpopulations utilizing other habitat choice strategies. We show that the coESS is characterized by a system of second-order equations. This characterization implies that the stochastic per-capita growth rates are negative in all occupied patches for all species despite all of the species coexisting. Applying this characterization to the coevolution of habitat-choice of competitors and predator-prey systems identifies under what environmental conditions, natural selection excorcises "the ghost of competition past'' and generates enemy-free and victimless habitats. Collectively, these results highlight the importance of temporal fluctuations, spatial heterogeneity and species interactions on the evolution of species spatial distributions.

    Keywords : Stochastic Lotka-Volterra dynamics; evolutionary stable strategies; habitat selection; environmental stochasticity

    Codes MSC :
    37H10 - Generation - Random and stochastic difference and differential equations
    92D25 - Population dynamics (general)

    Ressources complémentaires :
    https://www.cirm-math.fr/RepOrga/2302/Slides/Schreiber_CIRM_Week2_2020.pdf

      Informations sur la Vidéo

      Réalisateur : Recanzone, Luca
      Langue : Anglais
      Date de publication : 02/03/2020
      Date de captation : 13/02/2020
      Collection : Research talks ; Dynamical Systems and Ordinary Differential Equations ; Probability and Statistics
      Format : MP4
      Durée : 00:36:56
      Domaine : Probability & Statistics ; Dynamical Systems & ODE
      Audience : Chercheurs ; Doctorants , Post - Doctorants
      Download : https://videos.cirm-math.fr/2020-02-13_Schreiber.mp4

    Informations sur la rencontre

    Nom de la rencontre : Thematic Month Week 2: Mathematical Models in Evolutionary Biology / Mois thématique Semaine 2 : Modèles mathématiques en biologie de l'évolution
    Organisateurs de la rencontre : Champagnat, Nicolas ; Coville, Jérôme ; Gomulkiewicz, Richard ; Hamel, Francois ; Roques, Lionel
    Dates : 10/02/2020 - 14/02/2020
    Année de la rencontre : 2020
    URL Congrès : https://conferences.cirm-math.fr/2302.html

    Citation Data

    DOI : 10.24350/CIRM.V.19606803
    Cite this video as: Schreiber, Sebastian J. (2020). Coevolution of habitat use in stochastic environments. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19606803
    URI : http://dx.doi.org/10.24350/CIRM.V.19606803


    Voir aussi

    Bibliographie

    1. BENAIM, Michel. Stochastic persistence. arXiv preprint arXiv:1806.08450, 2018. - https://arxiv.org/abs/1806.08450

    2. CONNELL, Joseph H. Diversity and the coevolution of competitors, or the ghost of competition past. Oikos, 1980, p. 131-138. - http://dx.doi.org/10.2307/3544421

    3. FURRER, Roman D. et PASINELLI, Gilberto. Empirical evidence for source–sink populations: a review on occurrence, assessments and implications. Biological Reviews, 2016, vol. 91, no 3, p. 782-795. - https://doi.org/10.1111/brv.12195

    4. HAMILTON, William D. Extraordinary sex ratios. Science, 1967, vol. 156, no 3774, p. 477-488. - http://dx.doi.org/10.1126/science.156.3774.477

    5. HENING, Alexandru, NGUYEN, Dang H., et al. Coexistence and extinction for stochastic Kolmogorov systems. The Annals of Applied Probability, 2018, vol. 28, no 3, p. 1893-1942. - http://dx.doi.org/10.1214/17-AAP1347

    6. HOLT, Robert D. On the evolutionary stability of sink populations. Evolutionary Ecology, 1997, vol. 11, no 6, p. 723-731. - https://doi.org/10.1023/A:1018438403047

    7. M. J. JEFFRIES, J. H. LAWTON, Enemy free space and the structure of ecological communities, Biological Journal of the Linnean Society, Volume 23, Issue 4, December 1984, Pages 269–286. - https://doi.org/10.1111/j.1095-8312.1984.tb00145.x

    8. KRIVAN, V., CRESSMAN, R., SCHNEIDER, C. The ideal free distribution: a review and synthesis of the game-theoretic perspective. Theoretical Population Biology, 2008, vol. 73, no 3, p. 403-425 - https://doi.org/10.1016/j.tpb.2007.12.009

    9. PARKER, G.A. Searching for mates. In “Behavioural Ecology: an
      Evolutionary Approach”, JR Krebs and NB Davies, 1978. -

    10. PULLIAM, H. Ronald. Sources, sinks, and population regulation. The American Naturalist, 1988, vol. 132, no 5, p. 652-661. - https://doi.org/10.1086/284880

    11. SCHREIBER, Sebastian J., BENAÏM, Michel, et ATCHADÉ, Kolawolé AS. Persistence in fluctuating environments. Journal of Mathematical Biology, 2011, vol. 62, no 5, p. 655-683. - https://doi.org/10.1007/s00285-010-0349-5

    12. SCHREIBER, Sebastian J. The evolution of patch selection in stochastic environments. The American Naturalist, 2012, vol. 180, no 1, p. 17-34. - https://doi.org/10.1086/665655

    13. SCHREIBER, Sebastian J., FOX, Laurel R., et GETZ, Wayne M. Coevolution of contrary choices in host-parasitoid systems. The American Naturalist, 2000, vol. 155, no 5, p. 637-648. - https://doi.org/10.1086/303347

    14. SMITH, J. Maynard et PRICE, George R. The logic of animal conflict. Nature, 1973, vol. 246, no 5427, p. 15-18. - https://doi.org/10.1038/246015a0

Z