En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Bacterial movement by run and tumble: models, patterns, pathways, scales

Sélection Signaler une erreur
Virtualconference
Auteurs : Perthame, Benoît (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : At the individual scale, bacteria as E. coli move by performing so-called run-and-tumble movements. This means that they alternate a jump (run phase) followed by fast re-organization phase (tumble) in which they decide of a new direction for run. For this reason, the population is described by a kinetic-Botlzmann equation of scattering type. Nonlinearity occurs when one takes into account chemotaxis, the release by the individual cells of a chemical in the environment and response by the population.

These models can explain experimental observations, fit precise measurements and sustain various scales. They also allow to derive, in the diffusion limit, macroscopic models (at the population scale), as the Flux-Limited Keller-Segel system, in opposition to the traditional Keller-Segel system, this model can sustain robust traveling bands as observed in Adler's famous experiment.

Furthermore, the modulation of the tumbles, can be understood using intracellular molecular pathways. Then, the kinetic-Boltzmann equation can be derived with a fast reaction scale. Long runs at the individual scale and abnormal diffusion at the population scale, can also be derived mathematically.

Keywords : flux limited Keller-Segel system; chemotaxis; drift-diffusion equation; asymptotic analysis; kinetic transport

Codes MSC :
35B25 - Singular perturbations
35Q20 - Boltzmann equations
92C17 - Cell movement (chemotaxis, etc.)
35Q84 - Fokker-Planck equations
35Q92 - PDEs in connection with biology and other natural sciences

Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2355/Slides/slide_Benoit_PERTHAME.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 09/04/2021
    Date de captation : 25/03/2021
    Sous collection : Research talks
    arXiv category : Analysis of PDEs
    Domaine : Mathematics in Science & Technology
    Format : MP4 (.mp4) - HD
    Durée : 00:41:48
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2021-03-25_Perthame.mp4

Informations sur la Rencontre

Nom de la rencontre : Jean Morlet Chair 2021- Conference: Kinetic Equations: From Modeling Computation to Analysis / Chaire Jean-Morlet 2021 - Conférence : Equations cinétiques : Modélisation, Simulation et Analyse
Organisateurs de la rencontre : Bostan, Mihaï ; Jin, Shi ; Mehrenberger, Michel ; Montibeller, Celine
Dates : 22/03/2021 - 26/03/2021
Année de la rencontre : 2021
URL Congrès : https://www.chairejeanmorlet.com/2355.html

Données de citation

DOI : 10.24350/CIRM.V.19735403
Citer cette vidéo: Perthame, Benoît (2021). Bacterial movement by run and tumble: models, patterns, pathways, scales. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19735403
URI : http://dx.doi.org/10.24350/CIRM.V.19735403

Voir aussi

Bibliographie

  • CALVEZ, Vincent, PERTHAME, Benoȋt, et YASUDA, Shugo. Traveling wave and aggregation in a flux-limited Keller-Segel model. Kinetic & Related Models, 2018, vol. 11, no 4, p. 891 - http://dx.doi.org/10.3934/krm.2018035

  • PERTHAME, Benoît, TANG, Min, et VAUCHELET, Nicolas. Derivation of the bacterial run-and-tumble kinetic equation from a model with biochemical pathway. Journal of mathematical biology, 2016, vol. 73, no 5, p. 1161-1178. - https://doi.org/10.1007/s00285-016-0985-5



Sélection Signaler une erreur