En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Nonsymmetric Jack and Macdonald superpolynomials

Sélection Signaler une erreur
Virtualconference
Auteurs : Dunkl, Charles (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : Superpolynomials are formed with $N$ commuting and anti-commuting (skew) variables. By considering the space of skew variables of fixed degree as a module of the symmetric group $\mathcal{S}_{N}$ the theory of generalized Jack polynomials constructed by S Griffeth can be used to define nonsymmetric Jack superpolynomials. We present the theory, give details about the structure and derive norm formulas. Denote the parameter by $\kappa$ then the norm is positive-definite for $-\frac{1}{N}<\kappa<\frac{1}{N}$. Analogously there is a structure as Hecke algebra $\mathcal{H}_{N}(t)$-module on the skew polynomials and this allows the use of the theory of vectorvalued $(q, t)$-Macdonald polynomials studied by J-G Luque and the author. We outline the theory and present norm formulas and evaluations at special points. The norm is positive-definite for $q>0$ and min $(q^{1 / N}, q^{-1 / N}) < t < max (q^{1 / N}, q^{-1 / N} )$. As in the scalar case the evaluations use $(q, t)$-hook products.

Keywords : vector-valued Jack polynomials; supersymmetric Macdonald polynomials; hook tableaux; Hecke algebra

Codes MSC :
05E05 - Symmetric functions and generalizations
20C08 - Hecke algebras and their representations
20C30 - Representations of finite symmetric groups
33C52 - Orthogonal polynomials and functions associated with root systems

Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2404/Slides/Dunkl.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 02/12/2021
    Date de captation : 18/10/2021
    Sous collection : Research talks
    arXiv category : Representation Theory
    Domaine : Algebra ; Analysis and its Applications
    Format : MP4 (.mp4) - HD
    Durée : 00:46:54
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2021-10-18_Dunkl.mp4

Informations sur la Rencontre

Nom de la rencontre : Modern Analysis Related to Root Systems with Applications / Analyse moderne liée aux systèmes de racines avec applications
Organisateurs de la rencontre : Anker, Jean-Philippe ; Graczyk, Piotr ; Rösler, Margit ; Sawyer, Patrice
Dates : 18/10/2021 - 22/10/2021
Année de la rencontre : 2021
URL Congrès : https://conferences.cirm-math.fr/2404.html

Données de citation

DOI : 10.24350/CIRM.V.19821503
Citer cette vidéo: Dunkl, Charles (2021). Nonsymmetric Jack and Macdonald superpolynomials. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19821503
URI : http://dx.doi.org/10.24350/CIRM.V.19821503

Voir aussi

Bibliographie



Sélection Signaler une erreur