En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Matrix spherical functions and matrix orthogonal polynomials related to $BC_{2}$

Sélection Signaler une erreur
Multi angle
Auteurs : Koelink, Erik (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : Matrix spherical functions associated to the symmetric pair $(G, K)=$ $\left(\mathrm{SU}(m+2), \mathrm{S}(\mathrm{U}(2) \times \mathrm{U}(m))\right.$, having reduced root system of type $\mathrm{BC}_{2}$ are studied. We consider a $K$-representation $\left(\pi, V_{\pi}\right)$ arising from the $\mathrm{U}(2)$-part of $K$, then the induced representation $\operatorname{Ind}_{K}^{G} \pi$ is multiplicity free. The corresponding spherical functions, i.e. $\Phi: G \rightarrow \operatorname{End}\left(V_{\pi}\right)$ satisfying $\Phi\left(k_{1} g k_{2}\right)=\pi\left(k_{1}\right) \Phi(g) \pi\left(k_{2}\right)$ for all $g \in G, k_{1}, k_{2} \in K$, are studied by studying certain leading coefficients. This is done explicitly using the action of the radial part of the Casimir operator on these functions and their leading coefficients. To suitably grouped matrix spherical functions we associate two-variable matrix orthogonal polynomials giving a matrix analogue of Koornwinder's 1970 s two-variable orthogonal polynomials, which are Heckman-Opdam polynomials for $\mathrm{BC}_{2}$. In particular, we find explicit orthogonality relations and the polynomials being eigenfunctions to a second order matrix partial differential operator. This is joint work with Jie Liu (Radboud $\mathrm{U}$ ).

Keywords : matrix; spherical functions; matrix orthogonal polynomials; representation theory; Lie groups

Codes MSC :
22E46 - Semisimple Lie groups and their representations
33C52 - Orthogonal polynomials and functions associated with root systems
33C80 - Connections with groups, algebras, root systems and related topics
43A90 - Spherical functions, See also {22E45, 22E46, 33C65, 33D55}

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 02/12/2021
    Date de captation : 18/10/2021
    Sous collection : Research talks
    arXiv category : Classical Analysis and ODEs ; Representation Theory
    Domaine : Analysis and its Applications ; Lie Theory and Generalizations
    Format : MP4 (.mp4) - HD
    Durée : 00:58:48
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2021-10-18_Koelink.mp4

Informations sur la Rencontre

Nom de la rencontre : Modern Analysis Related to Root Systems with Applications / Analyse moderne liée aux systèmes de racines avec applications
Organisateurs de la rencontre : Anker, Jean-Philippe ; Graczyk, Piotr ; Rösler, Margit ; Sawyer, Patrice
Dates : 18/10/2021 - 22/10/2021
Année de la rencontre : 2021
URL Congrès : https://conferences.cirm-math.fr/2404.html

Données de citation

DOI : 10.24350/CIRM.V.19821803
Citer cette vidéo: Koelink, Erik (2021). Matrix spherical functions and matrix orthogonal polynomials related to $BC_{2}$. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19821803
URI : http://dx.doi.org/10.24350/CIRM.V.19821803

Voir aussi

Bibliographie



Sélection Signaler une erreur