En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Limit theorems for Bessel and Dunkl processes of large dimensions

Sélection Signaler une erreur
Virtualconference
Auteurs : Woerner, Jeannette (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : We study Bessel and Dunkl processes $\left(X_{t, k}\right)_{t>0}$ on $\mathbb{R}^{N}$ with possibly multivariate coupling constants $k \geq 0$. These processes describe interacting particle systems of Calogero-Moser-Sutherland type with $N$ particles. For the root systems $A_{N-1}$ and $B_{N}$ these Bessel processes are related with $\beta$-Hermite and $\beta$-Laguerre ensembles. Moreover, for the frozen case $k=\infty$, these processes degenerate to deterministic or pure jump processes. We use the generators for Bessel and Dunkl processes of types $\mathrm{A}$ and $\mathrm{B}$ and derive analogues of Wigner's semicircle and Marchenko-Pastur limit laws for $N \rightarrow \infty$ for the empirical distributions of the particles with arbitrary initial empirical distributions by using free convolutions. In particular, for Dunkl processes of type $\mathrm{B}$ new non-symmetric semicircle-type limit distributions on $\mathbb{R}$ appear. Our results imply that the form of the limiting measures is already completely determined by the frozen processes. Moreover, in the frozen cases, our approach leads to a new simple proof of the semicircle and Marchenko-Pastur limit laws for the empirical measures of the zeroes of Hermite and Laguerre polynomials respectively. (based on joint work with Michael Voit)

Keywords : Bessel and Dunkl processes; interacting particle systems; Hermite ensembles; Laguerre ensembles; free convolution

Codes MSC :
60B20 - Random matrices (probabilistic aspects)
60F05 - Central limit and other weak theorems
60F15 - Strong theorems
60J60 - Diffusion processes
60K35 - Interacting random processes; statistical mechanics type models; percolation theory
70F10 - $n$-body problem
82C22 - Interacting particle systems

Ressources complémentaires :
https://www.cirm-math.fr/RepOrga/2404/Slides/Woerner.pdf

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 02/12/2021
    Date de captation : 19/10/2021
    Sous collection : Research talks
    arXiv category : Probability
    Domaine : Probability & Statistics
    Format : MP4 (.mp4) - HD
    Durée : 00:57:31
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2021-10-19_Woerner.mp4

Informations sur la Rencontre

Nom de la rencontre : Modern Analysis Related to Root Systems with Applications / Analyse moderne liée aux systèmes de racines avec applications
Organisateurs de la rencontre : Anker, Jean-Philippe ; Graczyk, Piotr ; Rösler, Margit ; Sawyer, Patrice
Dates : 18/10/2021 - 22/10/2021
Année de la rencontre : 2021
URL Congrès : https://conferences.cirm-math.fr/2404.html

Données de citation

DOI : 10.24350/CIRM.V.19822003
Citer cette vidéo: Woerner, Jeannette (2021). Limit theorems for Bessel and Dunkl processes of large dimensions. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19822003
URI : http://dx.doi.org/10.24350/CIRM.V.19822003

Voir aussi

Bibliographie

  • VOIT, Michael et WOERNER, Jeannette HC. Limit theorems for Bessel and Dunkl processes of large dimensions and free convolutions. arXiv preprint arXiv:2009.13928, 2020. - https://arxiv.org/abs/2009.13928



Sélection Signaler une erreur