En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Resolution of Liouville CFT : Segal axioms and bootstrap

Sélection Signaler une erreur
Multi angle
Auteurs : Guillarmou, Colin (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : Liouville CFT is a conformal field theory developped in the early 80s in physics, it describes random surfaces and more precisely random Riemannian metrics on surfaces. We will explain, using the Gaussian multiplicative chaos, how to associate to each surface $\Sigma$ with boundary an amplitude, which is an $L^2$ function on the space of fields on the boundary of $\Sigma$ (i.e. the Sobolev space $H^{-s}(\mathbb{S}^1)^b$ equipped with a Gaussian measure, if the boundary of $\Sigma$ has $b$ connected components), and then how these amplitudes compose under gluing of surfaces along their boundary (the so-called Segal axioms).
This allows us to give formulas for all partition and correlation functions of the Liouville CFT in terms of $3$ point correlation functions on the Riemann sphere (DOZZ formula) and the conformal blocks, which are holomorphic functions of the moduli of the space of Riemann surfaces with marked points. This gives a link between the probabilistic approach and the representation theory approach for CFTs, and a mathematical construction and resolution of an important non-rational conformal field theory.
This is joint work with A. Kupiainen, R. Rhodes and V. Vargas.

Keywords : conformal field theory; Gaussian multiplicative chaos; conformal blocks

Codes MSC :
17B68 - Virasoro and related algebras
17B69 - Vertex operators; vertex operator algebras and related structures
60D05 - Geometric probability and stochastic geometry
81R10 - Infinite-dimensional groups and algebras motivated by physics, including Virasoro, Kac-Moody, W-algebras and other current algebras and their representations
81T80 - Simulation and numerical modeling

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 04/02/2022
    Date de captation : 20/01/2022
    Sous collection : Research talks
    arXiv category : Mathematical Physics ; Probability
    Domaine : Mathematical Physics ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Durée : 01:03:20
    Audience : Researchers
    Download : https://videos.cirm-math.fr/2022-01-20_Guillarmou.mp4

Informations sur la Rencontre

Nom de la rencontre : Random Geometry / Géométrie aléatoire
Organisateurs de la rencontre : Curien, Nicolas ; Goldschmidt, Christina ; Le Gall, Jean-François ; Miermont, Grégory ; Rhodes, Rémi
Dates : 17/01/2022 - 21/01/2022
Année de la rencontre : 2022
URL Congrès : https://conferences.cirm-math.fr/2528.html

Données de citation

DOI : 10.24350/CIRM.V.19878003
Citer cette vidéo: Guillarmou, Colin (2022). Resolution of Liouville CFT : Segal axioms and bootstrap. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19878003
URI : http://dx.doi.org/10.24350/CIRM.V.19878003

Voir aussi

Bibliographie

  • GUILLARMOU, Colin, KUPIAINEN, Antti, RHODES, Rémi, et al. Segal's axioms and bootstrap for Liouville Theory. arXiv preprint arXiv:2112.14859, 2021. - https://arxiv.org/abs/2112.14859

  • GUILLARMOU, Colin, KUPIAINEN, Antti, RHODES, Rémi, et al. Conformal bootstrap in Liouville Theory. arXiv preprint arXiv:2005.11530, 2020. - https://arxiv.org/abs/2005.11530



Imagette Video

Sélection Signaler une erreur