En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Some questions on the Brownian Map motivated by its higher-genus analogues

Sélection Signaler une erreur
Multi angle
Auteurs : Chapuy, Guillaume (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : Several operations of combinatorial surgery can be used to relate maps of a given genus g to maps of genus g' is smaller than g. One of them is the Tutte/Lehman-Walsh decomposition, but more advanced constructions exist in the combinatorial toolbox, based on the Marcus-Schaeffer/ Miermont or the trisection bijections.
At the asymptotic level, these constructions lead to surprising relations between the enumeration of maps of genus g, and the genus 0 Brownian map. I will talk about some fascinating identities and (open) problems resulting from these connections, related to Voronoi diagrams, 'W-functionals', and properties of the ISE measure. Although the motivation comes from 'higher genus', these questions deal with the usual Brownian map as everyone likes it.
This is not very new material, and a (mostly French) part of the audience may have heard these stories one million times. But still I hope it will be interesting to advertise them here. In particular, I do not know if recent 'Liouville-based' approaches have anything to say about all this.

Keywords : random maps; high-genus maps; Brownian maps; Voronoï diagrams; bijections; trisections

Codes MSC :
05A15 - Exact enumeration problems, generating functions
05A16 - Asymptotic enumeration
05C80 - Random graphs
60J80 - Branching processes (Galton-Watson, birth-and-death, etc.)
60J85 - Applications of branching processes

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 04/02/2022
    Date de captation : 20/01/2022
    Sous collection : Research talks
    arXiv category : Probability ; Combinatorics
    Domaine : Combinatorics ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Durée : 00:52:16
    Audience : Researchers ; Graduate Students
    Download : https://videos.cirm-math.fr/2022-01-20_Chapuis.mp4

Informations sur la Rencontre

Nom de la rencontre : Random Geometry / Géométrie aléatoire
Organisateurs de la rencontre : Curien, Nicolas ; Goldschmidt, Christina ; Le Gall, Jean-François ; Miermont, Grégory ; Rhodes, Rémi
Dates : 17/01/2022 - 21/01/2022
Année de la rencontre : 2022
URL Congrès : https://conferences.cirm-math.fr/2528.html

Données de citation

DOI : 10.24350/CIRM.V.19884603
Citer cette vidéo: Chapuy, Guillaume (2022). Some questions on the Brownian Map motivated by its higher-genus analogues. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19884603
URI : http://dx.doi.org/10.24350/CIRM.V.19884603

Voir aussi

Bibliographie

  • CHAPUY, Guillaume. The structure of unicellular maps, and a connection between maps of positive genus and planar labelled trees. Probability Theory and Related Fields, 2010, vol. 147, no 3, p. 415-447. - http://dx.doi.org/10.1007/s00440-009-0211-0

  • CHAPUY, Guillaume. On tessellations of random maps and the $$ t_g $$ tg-recurrence. Probability Theory and Related Fields, 2019, vol. 174, no 1, p. 477-500. - http://dx.doi.org/10.1007/s00440-018-0865-6

  • ADDARIO-BERRY, Louigi, ANGEL, Omer, CHAPUY, Guillaume, et al. Voronoi tessellations in the CRT and continuum random maps of finite excess. In : Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics, 2018. p. 933-946. - https://doi.org/10.1137/1.9781611975031.60



Imagette Video

Sélection Signaler une erreur