En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Quadratic twist families of elliptic curves with unusual $2^{\infty }$-Selmer groups

Sélection Signaler une erreur
Multi angle
Auteurs : Smith, Alexander (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : Given any elliptic curve $E$ over the rationals, we show that 50 % of the quadratic twists of $E$ have $2^{\infty}$-Selmer corank 0 and 50 % have $2^{\infty}$-Selmer corank 1. As a result, we show that Goldfeld's conjecture follows from the Birch and Swinnerton-Dyer conjecture.

Codes MSC :
11G20 - Curves over finite and local fields

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de publication : 30/05/2023
    Date de captation : 16/05/2023
    Sous collection : Research talks
    arXiv category : Number Theory
    Domaine : Number Theory
    Format : MP4 (.mp4) - HD
    Durée : 00:59:52
    Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2023-05-16_Smith.mp4

Informations sur la Rencontre

Nom de la rencontre : Jean-Morlet Chair - Conference - Arithmetic Statistics / Chaire Jean-Morlet - Conférence - Statistiques arithmétiques
Organisateurs de la rencontre : Anni, Samuele ; Stevenhagen, Peter ; Vonk, Jan ; Lorenzo Garcia, Elisa
Dates : 15/05/2023 - 19/05/2023
Année de la rencontre : 2023
URL Congrès : https://conferences.cirm-math.fr/2675.html

Données de citation

DOI : 10.24350/CIRM.V.20046203
Citer cette vidéo: Smith, Alexander (2023). Quadratic twist families of elliptic curves with unusual $2^{\infty }$-Selmer groups. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20046203
URI : http://dx.doi.org/10.24350/CIRM.V.20046203

Voir aussi

Bibliographie



Imagette Video

Sélection Signaler une erreur