En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Exact $\infty$-categories

Sélection Signaler une erreur
Multi angle
Auteurs : Jasso, Gustavo (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : Exact categories were introduced by Quillen in 1970s as part of his seminal work on algebraic K-theory. Exact categories provide a suitable enlargement of the class of abelian categories (for example, an extension-closed subcategory of an abelian category inherits the structure of an exact category) in which one "can do homological algebra". Recently, motivated also by questions in algebraic K-theory, Barwick introduced the class of exact infinity-categories, relying on the newly-developed theory of infinity-categories developed by Joyal, Lurie and others. This new class of mathematical objects includes not only the exact categories in the sense of Quillen but also the stable inftinty-categories in the sense of Lurie (the latter are to be regarded as refinements of triangulated categories in the sense of Verdier). The purpose of this lecture series is to motivate the theory of exact infinity-categories and sketch some of its applications. Familiarity with the theory of infinity-categories is not expected.

Keywords : exact categories; stable infinity-categories; stable hull; extriangulated categories

Codes MSC :
18N60 - (∞,1)-categories (quasi-categories, Segal spaces, etc.); ∞-topoi, stable ∞-categories
16G20 - Representations of quivers and partially ordered sets
18E30 - Derived categories, triangulated categories

    Informations sur la Vidéo

    Réalisateur : Recanzone, Luca
    Langue : Anglais
    Date de publication : 20/12/2023
    Date de captation : 27/11/2023
    Sous collection : Research talks
    arXiv category : Representation Theory
    Domaine : Algebra
    Format : MP4 (.mp4) - HD
    Durée : 00:58:36
    Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2023-11-27__Jasso.mp4

Informations sur la Rencontre

Nom de la rencontre : Current trends in representation theory, cluster algebras and geometry / Théorie des représentations, algèbres amassées et géométrie
Organisateurs de la rencontre : Amiot, Claire ; Brüstle, Thomas ; Palu, Yann ; Plamondon, Pierre-Guy
Dates : 27/11/2023 - 01/12/2023
Année de la rencontre : 2023
URL Congrès : https://conferences.cirm-math.fr/2875.html

Données de citation

DOI : 10.24350/CIRM.V.20115803
Citer cette vidéo: Jasso, Gustavo (2023). Exact $\infty$-categories. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20115803
URI : http://dx.doi.org/10.24350/CIRM.V.20115803

Voir aussi

Bibliographie

  • KLEMENC, Jona. The stable hull of an exact $\infty $-category. Homology, Homotopy and Applications, Vol. 24(2), 2022, pp.195-220., 2020. - https://dx.doi.org/10.4310/HHA.2022.v24.n2.a9

  • Lurie, Jacob. Higher Topos Theory (AM-170). Princeton University Press, 2009. - http://www.jstor.org/stable/j.ctt7s47v

  • LURIE, Jacob. Higher algebra. Harvard University, 2017. -

  • LURIE, Jacob. Spectral algebraic geometry, 2018. -

  • DYCKERHOFF, Tobias, JASSO, Gustavo, et WALDE, Tashi. Generalised BGP reflection functors via the Grothendieck construction. International Mathematics Research Notices, 2021, vol. 2021, no 20, p. 15733-15745. - https://doi.org/10.1093/imrn/rnz194

  • JASSO, Gustavo. Derived equivalences of upper-triangular ring spectra via reflection functors. arXiv e-prints, 2023, p. arXiv: 2306.12396. - https://arxiv.org/abs/2306.12396



Imagette Video

Sélection Signaler une erreur