En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

On the concave one-dimensional random assignment problem: Kantorovich meets young

Sélection Signaler une erreur
Multi angle
Auteurs : Trevisan, Dario (Auteur de la Conférence)
CIRM (Editeur )

Loading the player...

Résumé : We consider the assignment (or bipartite matching) problem between $n$ source points and $n$ target points on the real line, where the assignment cost is a concave power of the distance, i.e. |x − y|p, for 0 < p < 1. It is known that, differently from the convex case (p > 1) where the solution is rigid, i.e. it does not depend on p, in the concave case it may varies with p and exhibit interesting long-range connections, making it more appropriate to model realistic situations, e.g. in economics and biology. In the random version of the problem, the points are samples of i.i.d. random variables, and one is interested in typical properties as the sample size n grows. Barthe and Bordenave in 2013 proved asymptotic upper and lower bounds in the range 0 < p < 1/2, which they conjectured to be sharp. Bobkov and Ledoux, in 2020, using optimal transport and Fourier-analytic tools, determined explicit upper bounds for the average assignment cost in the full range 0 < p < 1, naturally yielding to the conjecture that a “phase transition” occurs at p = 1/2. We settle affirmatively both conjectures. The novel mathematical tool that we develop, and may be of independent interest, is a formulation of Kantorovich problem based on Young integration theory, where the difference between two measures is replaced by the weak derivative of a function with finite q-variation.
Joint work with M. Goldman (arXiv:2305.09234).

Keywords : matching problem; optimal transport; geometric probability; Young integral

Codes MSC :
60D05 - Geometric probability and stochastic geometry
49Q22 - Optimal transportation
60L99
    Informations sur la Vidéo

    Réalisateur : Recanzone, Luca
    Langue : Anglais
    Date de publication : 14/02/2024
    Date de captation : 22/01/2024
    Sous collection : Research talks
    arXiv category : Probability ; Combinatorics ; Functional Analysis
    Domaine : Analysis and its Applications ; Combinatorics ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Durée : 00:48:51
    Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-01-22_Trevisan.mp4

Informations sur la Rencontre

Nom de la rencontre : PDE & Probability in interaction: functional inequalities, optimal transport and particle systems / Interactions EDP/Probabilité: inégalités fonctionnelles, transport optimal et systèmes de particules
Organisateurs de la rencontre : Monmarché, Pierre ; Reygner, Julien ; Schlichting, André ; Simon, Marielle
Dates : 22/01/2024 - 26/01/2024
Année de la rencontre : 2024
URL Congrès : https://conferences.cirm-math.fr/2988.html

Données de citation

DOI : 10.24350/CIRM.V.20129403
Citer cette vidéo: Trevisan, Dario (2024). On the concave one-dimensional random assignment problem: Kantorovich meets young. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20129403
URI : http://dx.doi.org/10.24350/CIRM.V.20129403

Voir aussi

Bibliographie

  • GOLDMAN, Michael et TREVISAN, Dario. On the concave one-dimensional random assignment problem and Young integration theory. arXiv preprint arXiv:2305.09234, 2023. - https://doi.org/10.48550/arXiv.2305.09234



Imagette Video

Sélection Signaler une erreur