En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

gerer mes paniers

  • z

    Destination de la recherche

    Raccourcis

    1

    Quasilinear approximation of Vlasov and Liouville equations

    Sélection Signaler une erreur
    Virtualconference
    Auteurs : Bardos, Claude (Auteur de la Conférence)
    CIRM (Editeur )

    00:00
    00:00
     

    Résumé : This talk is devoted to the quasi linear approximation for solutions of the Vlasov equation a very popular tool in Plasma Physic cf. [4] which proposes, for the quantity:
    (1)
    q(t, v)=Rvdf(x, v, t)dx) ,
    the solution of a parabolic, linear or non linear evolution equation
    (2)
    tq(t, v)v(D(q, t;v)vq)=0
    Since the Vlasov equation is an hamiltonian reversible dynamic while (2) is not reversible whenever D(q, t, v)#0 the problem is subtle. Hence I did the following things :

    1. Give some sufficient conditions, in particular in relation with the Landau damping that would imply D(q, t, v)0. a situation where the equation (2) with D(q, t;v)=0 does not provides a meaning full approximation.

    2. Building on contributions of [7] and coworkers show the validity of the approximation (2) for large time and for a family of convenient randomized solutions. This is justified by the fact that the assumed randomness law is in agreement which what is observed by numerical or experimental observations (cf. [1]).

    3. In the spirit of a Chapman Enskog approximation formalize the very classical physicist approach (cf. [6] pages 514-532) one can show [3] that under analyticity assumptions this approximation is valid for short time. As in [6] one of the main ingredient of this construction is based on the spectral analysis of the linearized equation and as such it makes a link with a classical analysis of instabilities in plasma physic.

    Remarks

    In some sense the two approaches are complementary The short time is purely deterministic and the stochastic is based on the intuition that over longer time the randomness will take over of course the transition remains from the first regime to the second remains a challenging open problem. The similarity with the transition to turbulence in fluid mechanic is striking It is underlined by the fact that the tensor
    limϵ0Dϵ(t, v)=limϵ0dx0tϵ2dσEϵ(t, x+σv)Eϵ(tϵ2σ, x)
    which involves the electric fields here plays the role of the Reynolds stress tensor.

    2 Obtaining, for some macroscopic description, a space homogenous equation for the velocity distribution is a very natural goal. Here the Vlasov equation is used as an intermediate step in the derivation. And more generally it appears as an example of weak turbulence. In particular defining what would be the physical natural probability seems related to the derivation of e of the Lenard-Balescu equation as done in [5].

    Keywords : Vlasov equation; quasilinear approximation

    Codes MSC :
    82C70 - Transport processes
    35Q83 - Vlasov-like equations

    Ressources complémentaires :
    https://www.cirm-math.fr/RepOrga/2355/Slides/slide_Claude_BARDOS.pdf

      Informations sur la Vidéo

      Réalisateur : Hennenfent, Guillaume
      Langue : Anglais
      Date de publication : 09/04/2021
      Date de captation : 25/03/2021
      Sous collection : Research talks
      arXiv category : Analysis of PDEs
      Domaine : Mathematical Physics ; Mathematics in Science & Technology
      Format : MP4 (.mp4) - HD
      Durée : 00:49:49
      Audience : Researchers
      Download : https://videos.cirm-math.fr/2021-03-25_Bardos.mp4

    Informations sur la Rencontre

    Nom de la rencontre : Jean Morlet Chair 2021- Conference: Kinetic Equations: From Modeling Computation to Analysis / Chaire Jean-Morlet 2021 - Conférence : Equations cinétiques : Modélisation, Simulation et Analyse
    Organisateurs de la rencontre : Bostan, Mihaï ; Jin, Shi ; Mehrenberger, Michel ; Montibeller, Celine
    Dates : 22/03/2021 - 26/03/2021
    Année de la rencontre : 2021
    URL Congrès : https://www.chairejeanmorlet.com/2355.html

    Données de citation

    DOI : 10.24350/CIRM.V.19733503
    Citer cette vidéo: Bardos, Claude (2021). Quasilinear approximation of Vlasov and Liouville equations. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19733503
    URI : http://dx.doi.org/10.24350/CIRM.V.19733503

    Voir aussi

    Bibliographie

    • BARDOS, Claude et BESSE, Nicolas. Diffusion limit of the Vlasov equation in the weak turbulent regime.
      submitted. -

    • BARDOS, Claude et BESSE, Nicolas. About the derivation of the quasilinear approximation in plasma physics. arXiv preprint arXiv:2011.08085, 2020. - https://arxiv.org/pdf/2011.08085.pdf

    • BARDOS, Claude et BESSE. In preparation -

    • DIAMOND, Patrick H., FRISCH, Uriel, et POMEAU, Yves. Editorial introduction to the special issue “Plasma physics in the 20th century as told by players”. 2018. - https://doi.org/10.1140/epjh/e2018-90061-5

    • DUERINCKX, Mitia et SAINT-RAYMOND, Laure. Lenard-Balescu correction to mean-field theory. arXiv preprint arXiv:1911.10151, 2019. - https://arxiv.org/abs/1911.10151

    • KRALL, N. A. et TRIVELPIECE, A. W. Principles of Plasma Physics ‚McGraw—Hill Book Company. New York, 1973. -

    • POUPAUD, Frédéric et VASSEUR, Alexis. Classical and quantum transport in random media. Journal de mathématiques pures et appliquées, 2003, vol. 82, no 6, p. 711-748. - https://doi.org/10.1016/S0021-7824(03)00038-2



    Sélection Signaler une erreur
    Close