En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Modelling multivariate extreme value distributions via Markov trees

Bookmarks Report an error
Multi angle
Authors : Segers, Johan (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Multivariate extreme value distributions are a common choice for modelling multivariate extremes. In high dimensions, however, the construction of flexible and parsimonious models is challenging. We propose to combine bivariate extreme value distributions into a Markov random field with respect to a tree. Although in general not an extreme value distribution itself, this Markov tree is attracted by a multivariate extreme value distribution. The latter serves as a tree-based approximation to an unknown extreme value distribution with the given bivariate distributions as margins. Given data, we learn an appropriate tree structure by Prim's algorithm with estimated pairwise upper tail dependence coefficients or Kendall's tau values as edge weights. The distributions of pairs of connected variables can be fitted in various ways. The resulting tree-structured extreme value distribution allows for inference on rare event probabilities, as illustrated on river discharge data from the upper Danube basin.

Keywords : graphical model; Markov random field; extreme value distribution; tail dependence coefficient

MSC Codes :
62G30 - Order statistics; empirical distribution functions
62G32 - Statistics of extreme values; tail inference
62H22 - Probabilistic graphical models

    Information on the Video

    Film maker : Récanzone, Luca
    Language : English
    Available date : 10/10/2022
    Conference Date : 26/09/2022
    Subseries : Research talks
    arXiv category : Methodology
    Mathematical Area(s) : Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:43:05
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2022-09-26_Segers.mp4

Information on the Event

Event Title : Adaptive and High-Dimensional Spatio-Temporal Methods for Forecasting / Méthodes spatio-temporelles adaptatives et en grande dimension pour la prédiction
Event Organizers : Bardet, Jean-Marc ; Naveau, Philippe ; Subba Rao, Suhasini ; Veraart, Almut ; von Sachs, Rainer
Dates : 26/09/2022 - 30/09/2022
Event Year : 2022
Event URL : https://conferences.cirm-math.fr/2619.html

Citation Data

DOI : 10.24350/CIRM.V.19961603
Cite this video as: Segers, Johan (2022). Modelling multivariate extreme value distributions via Markov trees. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19961603
URI : http://dx.doi.org/10.24350/CIRM.V.19961603

See Also

Bibliography



Imagette Video

Bookmarks Report an error