En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

On the $L^p$ Baum-Connes conjecture

Bookmarks Report an error
Multi angle
Authors : Kasparov, Gennadi (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : The right side of the Baum-Connes conjecture is the $K$-theory of the reduced $C^*$-algebra $C^*_{red} (G)$ of the group $G$. This algebra is the completion of the algebra $L^1(G)$ in the norm of the algebra of operators acting on $L^2(G)$. If we complete the algebra $L^1(G)$ in the norm of the algebra of operators acting on $L^p(G)$ we will get the Banach algebra $C^{*,p}_{red}(G)$. The $K$-theory of this algebra serves as the right side of the $L^p$-version of the Baum-Connes conjecture. The construction of the left side and the assembly map in this case requires a little bit of techniques of asymptotic morphisms for Banach algebras. A useful category of Banach algebras for this purpose includes all algebras of operators acting on $L^p$-spaces (which may be called $L^p$-algebras).
The current joint work in progress with Guoliang Yu aims at proving the following result:
The $L^p$-version of the Baum-Connes conjecture with coefficients in any $L^p$-algebra is true for any discrete group $G$ which admits an affine-isometric, metrically proper action on the space $X = l^p(Z)$, where $Z$ is a countable discrete set, so that the linear part of this action is induced by a measure-preserving action of $G$ on $Z$.
I will discuss the techniques involved in this work.

MSC Codes :
19K35 - Kasparov theory ($KK$-theory)
46L80 - K-theory and operator algebras (including cyclic theory) [See also 18F25, 19Kxx, 46M20, 55Rxx, 58J22]
58B34 - Noncommutative geometry (à la Connes)

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 02/12/15
    Conference Date : 05/11/2015
    Subseries : Research talks
    arXiv category : Operator Algebras ; Metric Geometry
    Mathematical Area(s) : Analysis and its Applications
    Format : MP4 (.mp4) - HD
    Video Time : 00:48:18
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2015-11-05_Kasparov.mp4

Information on the Event

Event Title : Conference on noncommutative geometry / Conférence de géométrie non commutative
Event Organizers : Debord, Claire ; Le Gall, Pierre-Yves ; Tu, Jean-Louis ; Vaes, Stefaan ; Vassout, Stéphane ; Vergnioux, Roland
Dates : 02/11/15 - 06/11/15
Event Year : 2015
Event URL : http://conferences.cirm-math.fr/1206.html

Citation Data

DOI : 10.24350/CIRM.V.18884903
Cite this video as: Kasparov, Gennadi (2015). On the $L^p$ Baum-Connes conjecture. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18884903
URI : http://dx.doi.org/10.24350/CIRM.V.18884903

Bibliography



Bookmarks Report an error