En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

On S-Diophantine Tuples

Bookmarks Report an error
Virtualconference
Authors : Ziegler, Volker (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Given a finite set of primes $S$ and a m-tuple $(a_{1},...,a_{m})$ of positive, distinct integers we call the m-tuple $S$-Diophantine, if for each 1 ≤ i < j ≤ m the quantity $a_{i}a_{j}+1$ has prime divisors coming only from the set $S$. In this talk we discuss the existence of m-tuples if the set of primes $S$ is small. We will discuss recent results concerning the case that $|S| = 2$ and $|S| = 3$.

Keywords : Diophantine equations; S-unit equations; S-Diophantine tuples

MSC Codes :
11A51 - "Factorization; primality"
11D61 - Exponential equations
11Y50 - Computer solution of Diophantine equations

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 01/12/2020
    Conference Date : 23/11/2020
    Subseries : Research talks
    arXiv category : Number Theory
    Mathematical Area(s) : Number Theory
    Format : MP4 (.mp4) - HD
    Video Time : 00:48:07
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2020-11-23_Ziegler.mp4

Information on the Event

Event Title : Jean-Morlet Chair 2020 - Conference: Diophantine Problems, Determinism and Randomness / Chaire Jean-Morlet 2020 - Conférence : Problèmes diophantiens, déterminisme et aléatoire
Event Organizers : Rivat, Joël ; Tichy, Robert
Dates : 23/11/2020 - 27/11/2020
Event Year : 2020
Event URL : https://www.chairejeanmorlet.com/2256.html

Citation Data

DOI : 10.24350/CIRM.V.19690303
Cite this video as: Ziegler, Volker (2020). On S-Diophantine Tuples. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19690303
URI : http://dx.doi.org/10.24350/CIRM.V.19690303

See Also

Bibliography

  • ZIEGLER, Volker. Finding all $ S $-Diophantine quadruples for a fixed set of primes $ S$. arXiv preprint arXiv:2010.11670, 2020. - https://arxiv.org/abs/2010.11670



Bookmarks Report an error