En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Skolem's conjecture and exponential Diophantine equations

Sélection Signaler une erreur
Virtualconference
Auteurs : Hajdu, Lajos (Auteur de la conférence)
CIRM (Editeur )

Loading the player...

Résumé : Exponential Diophantine equations, say of the form (1) $u_{1}+...+u_{k}=b$ where the $u_{i}$ are exponential terms with fixed integer bases and unknown exponents and b is a fixed integer, play a central role in the theory of Diophantine equations, with several applications of many types. However, we can bound the solutions only in case of k = 2 (by results of Gyory and others, based upon Baker's method), for k > 2 only the number of so-called non-degenerate solutions can be bounded (by the Thue-Siegel-Roth-Schmidt method; see also results of Evertse and others). In particular, there is a big need for a method which is capable to solve (1) completely in concrete cases.
Skolem's conjecture (roughly) says that if (1) has no solutions, then it has no solutions modulo m with some m. In the talk we present a new method which relies on the principle behind the conjecture, and which (at least in principle) is capable to solve equations of type (1), for any value of k. We give several applications, as well. Then we provide results towards the solution of Skolem's conjecture. First we show that in certain sense it is 'almost always' valid. Then we provide a proof for the conjecture in some cases with k = 2, 3. (The handled cases include Catalan's equation and Fermat's equation, too - the precise connection will be explained in the talk). Note that previously Skolem's conjecture was proved only for k = 1, by Schinzel.
The new results presented are (partly) joint with Bertok, Berczes, Luca, Tijdeman.

Mots-Clés : exponential Diophantine equations; Skolem's conjecture

Codes MSC :
11D41 - "Higher degree equations; Fermat's equation"
11D61 - Exponential equations
11D79 - Congruences in many variables

    Informations sur la Vidéo

    Réalisateur : Hennenfent, Guillaume
    Langue : Anglais
    Date de Publication : 01/12/2020
    Date de Captation : 24/11/2020
    Sous Collection : Research talks
    Catégorie arXiv : Number Theory
    Domaine(s) : Théorie des Nombres
    Format : MP4 (.mp4) - HD
    Durée : 00:52:28
    Audience : Chercheurs
    Download : https://videos.cirm-math.fr/2020-11-24_Hajdu.mp4

Informations sur la Rencontre

Nom de la Rencontre : Jean-Morlet Chair 2020 - Conference: Diophantine Problems, Determinism and Randomness / Chaire Jean-Morlet 2020 - Conférence : Problèmes diophantiens, déterminisme et aléatoire
Organisateurs de la Rencontre : Rivat, Joël ; Tichy, Robert
Dates : 23/11/2020 - 27/11/2020
Année de la rencontre : 2020
URL de la Rencontre : https://www.chairejeanmorlet.com/2256.html

Données de citation

DOI : 10.24350/CIRM.V.19687703
Citer cette vidéo: Hajdu, Lajos (2020). Skolem's conjecture and exponential Diophantine equations. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19687703
URI : http://dx.doi.org/10.24350/CIRM.V.19687703

Voir Aussi

Bibliographie

  • HAJDU, L. et TIJDEMAN, R. Skolem's conjecture confirmed for a family of exponential equations. Acta Arithmetica, 2020, vol. 192, p. 105-110. - http://dx.doi.org/10.4064/aa190114-25-2

  • BERTÓK, Csanád et HAJDU, Lajos. A Hasse-type principle for exponential Diophantine equations and its applications. Mathematics of Computation, 2016, vol. 85, no 298, p. 849-860. - http://dx.doi.org/10.1090/mcom/3002

  • BERTÓK, Csanád et HAJDU, Lajos. A Hasse-type principle for exponential Diophantine equations over number fields and its applications. Monatshefte für Mathematik, 2018, vol. 187, no 3, p. 425-436. - https://doi.org/10.1007/s00605-018-1169-8



Sélection Signaler une erreur