En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

gerer mes paniers

  • z

    Destination de la recherche

    Raccourcis

    1

    Eremenko's conjecture, Devaney's hairs, and the growth of counterexamples

    Sélection Signaler une erreur
    Multi angle
    Auteurs : Brown, Andrew (Auteur de la Conférence)
    CIRM (Editeur )

    00:00
    00:00
     

    Résumé : Fatou noticed in 1926 that certain transcendental entire functions have Julia sets in which there are curves of points that escape to infinity under iteration and he wondered whether this might hold for a more general class of functions. In 1989, Eremenko carried out an investigation of the escaping set of a transcendental entire function f, I(f)={zC:|fn(z)|} and produced a conjecture with a weak and a strong form. The strong form asks if every point in the escaping set of an arbitrary transcendental entire function can be joined to infinity by a curve in the escaping set.
    This was answered in the negative by the 2011 paper of Rottenfusser, Rückert, Rempe, and Schleicher (RRRS) by constructing a tract that produces a function that cannot contain such a curve. In the same paper, it was also shown that if the function was of finite order, that is, log log |f(z)|=O(log|z|) as |z|, then every point in the escaping set can indeed be connected to infinity by a curve in the escaping set.
    The counterexample f used in the RRRS paper has growth such that log log |f(z)|=O(log|z|)k where K>12 is an arbitrary constant. The question is, can this exponent, K, be decreased and can explicit calculations and counterexamples be performed and constructed that improve on this?

    Codes MSC :
    37F10 - Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
    37F15 - Expanding maps; hyperbolicity; structural stability
    37F50 - Small divisors, rotation domains and linearization; Fatou and Julia sets

      Informations sur la Vidéo

      Réalisateur : Hennenfent, Guillaume
      Langue : Anglais
      Date de publication : 02/11/2021
      Date de captation : 20/09/2021
      Sous collection : Research talks
      arXiv category : Dynamical Systems ; Complex Variables
      Domaine : Dynamical Systems & ODE
      Format : MP4 (.mp4) - HD
      Durée : 00:21:59
      Audience : Researchers
      Download : https://videos.cirm-math.fr/2021-09-20_Brown.mp4

    Informations sur la Rencontre

    Nom de la rencontre : Advancing Bridges in Complex Dynamics / Avancer les connections dans la dynamique complexe
    Organisateurs de la rencontre : Benini, Anna Miriam ; Drach, Kostiantyn ; Dudko, Dzmitry ; Hlushchanka, Mikhail ; Schleicher, Dierk
    Dates : 20/09/2021 - 24/09/2021
    Année de la rencontre : 2021
    URL Congrès : https://conferences.cirm-math.fr/2546.html

    Données de citation

    DOI : 10.24350/CIRM.V.19811103
    Citer cette vidéo: Brown, Andrew (2021). Eremenko's conjecture, Devaney's hairs, and the growth of counterexamples. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19811103
    URI : http://dx.doi.org/10.24350/CIRM.V.19811103

    Voir aussi

    Bibliographie



    Sélection Signaler une erreur
    Close