En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

gerer mes paniers

  • z

    Destination de la recherche

    Raccourcis

    1

    Artificial Intelligence captures language of life written in proteins

    Sélection Signaler une erreur
    Multi angle
    Auteurs : Rost, Burkhard (Auteur de la Conférence)
    CIRM (Editeur )

    00:00
    00:00
     

    Résumé : The objective of our group is to predict aspects of protein function and structure from sequence. The wealth of evolutionary information available through comparing the whole bio-diversity of species makes such an ambitious goal achievable. Our particular niche is the combination of evolutionary information (EI) with machine learning (ML) and artificial intelligence (AI). 30 years ago, the marriage of machine learning and evolutionary information (in the form of Multiple Sequence Alignments) allowed a breakthrough in secondary structure prediction. The same principle has been underlying all state-of-the-art predictions of protein structure and function and is also the root for the program that broke through in protein structure prediction, namely AlphaFold2. Over the last two years, it has become possible to deep learn the language of life written in proteins through protein Language Models (pLMs). The information extracted is transfer learned to supervise learn protein prediction with annotations. I will present three particular new methods predicting protein structure (1D: secondary structure, membrane regions, & disorder, 2D: inter-residue distances/contacts, 3D: co-ordinates) and protein function (sub-cellular location, binding residues, GO terms), and the effects of sequence variation using pLMs. These embeddings allow for some applications to reach for others to surpass the state-of-the-art without using evolutionary information. Crucial in all of this is the understanding of the AI and the control of database bias. For both computational biology could serve as a sandbox to prepare more sensitive applications of AI in society.

    Keywords : protein language models; protein structure & function prediction; machine learning

    Codes MSC :

      Informations sur la Vidéo

      Réalisateur : Hennenfent, Guillaume
      Langue : Anglais
      Date de publication : 03/04/2023
      Date de captation : 23/03/2023
      Sous collection : Research talks
      arXiv category : Machine Learning ; Biological Physics
      Domaine : Analysis and its Applications ; Numerical Analysis & Scientific Computing ; Computer Science ; Mathematics in Science & Technology ; Probability & Statistics
      Format : MP4 (.mp4) - HD
      Durée : 00:35:39
      Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
      Download : https://videos.cirm-math.fr/2023-03-23_Rost.mp4

    Informations sur la Rencontre

    Nom de la rencontre : Interplay between AI and mathematical modelling in the post-structural genomics era / Interaction entre l'IA et la modélisation mathématique à l'ère post-génomique structurale
    Organisateurs de la rencontre : Fidelis, Krzysztof ; Grudinin, Sergei ; Laine, Elodie
    Dates : 20/03/2023 - 24/03/2023
    Année de la rencontre : 2023
    URL Congrès : https://conferences.cirm-math.fr/2767.html

    Données de citation

    DOI : 10.24350/CIRM.V.20020403
    Citer cette vidéo: Rost, Burkhard (2023). Artificial Intelligence captures language of life written in proteins. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20020403
    URI : http://dx.doi.org/10.24350/CIRM.V.20020403

    Voir aussi

    Bibliographie



    Imagette Video

    Sélection Signaler une erreur
    Close