En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Hyperbolic triangles with no positive Neumann eigenvalues

Bookmarks Report an error
Multi angle
Authors : Judge, Christopher (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : In joint work with Luc Hillairet, we show that the Laplacian associated with the generic finite area triangle in hyperbolic plane with one vertex of angle zero has no positive Neumann eigenvalues. This is the first evidence for the Phillips-Sarnak philosophy that does not depend on a multiplicity hypothesis. The proof is based an a method that we call asymptotic separation of variables.

MSC Codes :
11F72 - Spectral theory; Selberg trace formula
35P05 - General topics in linear spectral theory
58J50 - Spectral problems; spectral geometry; scattering theory

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 12/06/2016
    Conference Date : 26/04/2016
    Subseries : Research talks
    arXiv category : Spectral Theory ; Classical Analysis and ODEs ; Differential Geometry
    Mathematical Area(s) : Analysis and its Applications ; Geometry ; Dynamical Systems & ODE ; PDE
    Format : MP4 (.mp4) - HD
    Video Time : 00:58:00
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2016-04-26_Judge.mp4

Information on the Event

Event Title : Evolution equations on singular spaces / Équations d'évolution sur les espaces singuliers
Event Organizers : Baskin, Dean ; Hillairet, Luc ; Wunsch, Jared
Dates : 25/04/2016 - 29/04/2016
Event Year : 2016
Event URL : http://conferences.cirm-math.fr/1396.html

Citation Data

DOI : 10.24350/CIRM.V.18963503
Cite this video as: Judge, Christopher (2016). Hyperbolic triangles with no positive Neumann eigenvalues. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.18963503
URI : http://dx.doi.org/10.24350/CIRM.V.18963503

See Also

Bibliography



Bookmarks Report an error