Authors : Brandolese, Lorenzo (Author of the conference)
CIRM (Publisher )
Abstract :
We study the global existence of the parabolic-parabolic Keller–Segel system in $\mathbb{R}^{d}$. We prove that initial data of arbitrary size give rise to global solutions provided the diffusion parameter $\tau$ is large enough in the equation for the chemoattractant. This fact was observed before in the two-dimensional case by Biler, Guerra and Karch (2015) and Corrias, Escobedo and Matos (2014). Our analysis improves earlier results and extends them to any dimension d ≥ 3. Our size conditions on the initial data for the global existence of solutions seem to be optimal, up to a logarithmic factor in $\tau$ , when $\tau\gg 1$: we illustrate this fact by introducing two toy models, both consisting of systems of two parabolic equations, obtained after a slight modification of the nonlinearity of the usual Keller–Segel system. For these toy models, we establish in a companion paper finite time blowup for a class of large solutions.
Keywords : chemotaxis; well-posedness
MSC Codes :
92C17
- Cell movement (chemotaxis, etc.)
35Q92
- PDEs in connection with biology and other natural sciences
Additional resources :
https://www.cirm-math.fr/RepOrga/2576/Slides/brandolese.pdf
Film maker : Hennenfent, Guillaume
Language : English
Available date : 13/06/2022
Conference Date : 12/05/2022
Subseries : Research talks
arXiv category : Analysis of PDEs
Mathematical Area(s) : PDE
Format : MP4 (.mp4) - HD
Video Time : 00:29:10
Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
Download : https://videos.cirm-math.fr/2022-05-12_Brandolese.mp4
|
Event Title : Jean-Morlet Chair 2022 - Conference: Nonlinear PDEs in Fluid Dynamics / Chaire Jean-Morlet 2022 - Conférence : EDP non-linéaires en dynamique des fluides Event Organizers : Danchin, Raphaël ; Hieber, Matthias ; Monniaux, Sylvie ; Perrin, Charlotte Dates : 09/05/2022 - 13/05/2022
Event Year : 2022
Event URL : https://www.chairejeanmorlet.com/2576.html
DOI : 10.24350/CIRM.V.19916603
Cite this video as:
Brandolese, Lorenzo (2022). Large global solutions of the parabolic-parabolic Keller-Segel system in higher dimensions. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19916603
URI : http://dx.doi.org/10.24350/CIRM.V.19916603
|
See Also
Bibliography
- BILER, Piotr, BORITCHEV, Alexandre, et BRANDOLESE, Lorenzo. Large global solutions of the parabolic-parabolic Keller-Segel system in higher dimensions. arXiv preprint arXiv:2203.09130, 2022. - https://arxiv.org/abs/2203.09130