En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Liouville's inequality for transcendental points on projective varieties

Bookmarks Report an error
Multi angle
Authors : Gasbarri, Carlo (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Liouville inequality is a lower bound of the norm of an integral section of a line bundle on an algebraic point of a variety. It is an important tool in may proofs in diophantine geometry and in transcendence. On transcendental points an inequality as good as Liouville inequality cannot hold. We will describe similar inequalities which hold for "many" transcendental points and some applications

MSC Codes :
11J82 - Measures of irrationality and of transcendence
14G25 - Global ground fields

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 02/02/17
    Conference Date : 26/01/17
    Subseries : Research talks
    arXiv category : Algebraic Geometry ; Number Theory
    Mathematical Area(s) : Algebraic & Complex Geometry ; Number Theory
    Format : MP4 (.mp4) - HD
    Video Time : 00:40:55
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2017-01-26_Gasbarri.mp4

Information on the Event

Event Title : Algebraic geometry and complex geometry / Géométrie algébrique et géométrie complexe
Event Organizers : Broustet, Amaël ; Pasquier, Boris
Dates : 23/01/17 - 27/01/17
Event Year : 2017
Event URL : http://conferences.cirm-math.fr/1593.html

Citation Data

DOI : 10.24350/CIRM.V.19115603
Cite this video as: Gasbarri, Carlo (2017). Liouville's inequality for transcendental points on projective varieties. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19115603
URI : http://dx.doi.org/10.24350/CIRM.V.19115603

See Also

Bibliography



Bookmarks Report an error