https://cdn.jwplayer.com/libraries/kxatZa2V.js CIRM - Videos & books Library - Computing classical modular forms as orthogonal modular forms
En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
2

Computing classical modular forms as orthogonal modular forms

Bookmarks Report an error
Post-edited
Authors : Voight, John (Author of the conference)
CIRM (Publisher )

Loading the player...
quadratic forms and lattices isometries and genus neighbors orthogonal modular forms and Hecke action Birch theorem Even Clifford algebra weight spinor norm Hecke operator supersingular elliptic curves

Abstract : Birch gave an extremely efficient algorithm to compute a certain subspace of classical modular forms using the Hecke action on classes of ternary quadratic forms. We extend this method to compute all forms of non-square level using the spinor norm, and we exhibit an implementation that is very fast in practice. This is joint work with Jeffery Hein and Gonzalo Tornaria.

MSC Codes :
11E20 - General ternary and quaternary quadratic forms; forms of more than two variables
11F11 - Holomorphic modular forms of integral weight
11F27 - Theta series; Weil representation; theta correspondences
11F37 - Forms of half-integer weight; nonholomorphic modular forms

Additional resources :
http://www.cirm-math.fr/ProgWeebly/Renc1608/voight.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 29/06/2017
    Conference Date : 21/06/2017
    Subseries : Research talks
    arXiv category : Number Theory
    Mathematical Area(s) : Algebraic & Complex Geometry ; Number Theory
    Format : MP4 (.mp4) - HD
    Video Time : 00:57:41
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2017-06-21_Voight.mp4

Information on the Event

Event Title : AGCT - Arithmetic, Geometry, Cryptography and Coding Theory / AGCT - Arithmétique, géométrie, cryptographie et théorie des codes
Event Organizers : Aubry, Yves ; Howe, Everett ; Ritzenthaler, Christophe
Dates : 19/06/17 - 23/06/17
Event Year : 2017
Event URL : http://conferences.cirm-math.fr/1608.html

Citation Data

DOI : 10.24350/CIRM.V.19185803
Cite this video as: Voight, John (2017). Computing classical modular forms as orthogonal modular forms. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19185803
URI : http://dx.doi.org/10.24350/CIRM.V.19185803

See Also

Bibliography

  • Birch, B.J. (1991). Hecke actions on classes of ternary quadratic forms. In A. Pethö, M.E. Pohst, H.C. Williams & H.G. Zimmer (Eds.), Computational number theory : proceedings of the colloquium on computational number theory held at Kossuth Lajos University, Debrecen (Hungary), September 4-9, 1989 (pp. 191-212). Berlin: de Gruyter - https://www.zbmath.org/?q=an:0748.11023

  • Hein, J. (2016). Orthogonal modular forms: An application to a conjecture of birch, algorithms and computations (Order No. 10145500). ProQuest Dissertations & Theses Global - http://gradworks.umi.com/10/14/10145500.html



Bookmarks Report an error