En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Particle algorithm for McKean SDE: a short review on numerical analysis

Bookmarks Report an error
Multi angle
Authors : Bossy, Mireille (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract :
MSC Codes :
60H10 - Stochastic ordinary differential equations
60K35 - Interacting random processes; statistical mechanics type models; percolation theory
65C30 - Stochastic differential and integral equations
65C35 - Stochastic particle methods (numerical analysis)

Additional resources :
http://smai.emath.fr/cemracs/cemracs17/Slides/bossy.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 26/07/17
    Conference Date : 18/07/17
    Subseries : Research School
    arXiv category : Numerical Analysis ; Probability
    Mathematical Area(s) : Probability & Statistics ; Numerical Analysis & Scientific Computing
    Format : MP4 (.mp4) - HD
    Video Time : 01:02:06
    Targeted Audience : Researchers ; Graduate Students
    Download : https://videos.cirm-math.fr/2017-07-18_Bossy.mp4

Information on the Event

Event Title : CEMRACS - Summer school: Numerical methods for stochastic models: control, uncertainty quantification, mean-field / CEMRACS - École d'été : Méthodes numériques pour équations stochastiques : contrôle, incertitude, champ moyen
Event Organizers : Bouchard, Bruno ; Chassagneux, Jean-François ; Delarue, François ; Gobet, Emmanuel ; Lelong, Jérôme
Dates : 17/07/17 - 25/08/17
Event Year : 2017
Event URL : http://conferences.cirm-math.fr/1556.html

Citation Data

DOI : 10.24350/CIRM.V.19198803
Cite this video as: Bossy, Mireille (2017). Particle algorithm for McKean SDE: a short review on numerical analysis. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19198803
URI : http://dx.doi.org/10.24350/CIRM.V.19198803

See Also

Bibliography

  • Antonelli, F., & Kohatsu-Higa, A. (2002). Rate of convergence of a particle method to the solution of the McKean-Vlasov equation. The Annals of Applied Probability, 12(2), 423-476 - http://dx.doi.org/10.1214/aoap/1026915611

  • Bernardin, F., Bossy, M., Chauvin, C., Jabir, J.-F., & Rousseau, A. (2010). Stochastic Lagrangian method for downscaling problems in computational fluid dynamics. ESAIM: Mathematical Modelling and Numerical Analysis, 44(5), 885-920 - http://dx.doi.org/10.1051/m2an/2010046

  • Bossy, M., Espina, J., Moricel, J., Paris, C., & Rousseau, A. (2016). Modeling the wind circulation around mills with a Lagrangian stochastic approach. SMAI Journal of computational mathematics, 2, 177-214 - http://dx.doi.org/10.5802/smai-jcm.13

  • Bossy, M., & Jabir, J.-F. (2015). Lagrangian stochastic models with specular boundary condition. Journal of Functional Analysis, 268(6), 1309-1381 - http://dx.doi.org/10.1016/j.jfa.2014.11.016

  • Bossy, M., Fontbona, J., Jabin, P.-E., & Jabir, J.-F. (2013). Local existence of analytical solutions to an incompressible Lagrangian stochastic model in a periodic domain. Communications in Partial Differential Equations, 38(7-9), 1141-1182 - http://dx.doi.org/10.1080/03605302.2013.786727

  • Bossy, M., & Jabir, J.-F. (2011). On confined McKean Langevin processes satisfying the mean no-permeability boundary condition. Stochastic Processes and their Applications, 121(12), 2751-2775 - http://dx.doi.org/10.1016/j.spa.2011.07.006

  • Durbin, P.A., & Speziale, C.G. (1994). Realizability of second-moment closure via stochastic analysis. Journal of Fluid Mechanics, 280, 395-407 - http://dx.doi.org/10.1017/S0022112094002983

  • Jourdain, B., & Méléard, S. (1998). Propagation of chaos and fluctuations for a moderate model with smooth initial data. Annales de l'Institut Henri Poincaré. Probabilités et Statistiques, 34(6), 727-766 - http://dx.doi.org/10.1016/S0246-0203(99)80002-8

  • Minier, J.-P., & Pozorski, J. (1999). Wall-boundary conditions in probability density function methods and application to a turbulent channel flow. Physics of Fluids, 11(9), 2632-2644 - http://dx.doi.org/10.1063/1.870125

  • Pope, S.B. (1994). Lagrangian PDF methods for turbulent flows. Annual Review of Fluid Mechanics, 26, 23-63 - https://doi.org/10.1146/annurev.fl.26.010194.000323



Bookmarks Report an error