En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK

Manage my selections

  • z

    Destination de la recherche

    Raccourcis

    1

    Complex Monge-Ampere equations with prescribed singularities​

    Bookmarks Report an error
    Multi angle
    Authors : Di Nezza, Eleonora (Author of the conference)
    CIRM (Publisher )

    00:00
    00:00
     

    Abstract : Since the proof of the Calabi conjecture given by Yau, complex Monge-Ampère equations on compact Kähler manifolds have been intensively studied.
    In this talk we consider complex Monge-Ampère equations with prescribed singularities. More precisely, we fix a potential and we show existence and uniqueness of solutions of complex Monge-Ampère equations which have the same singularity type of the model potential we chose. This result can be interpreted as a generalisation of Yau's theorem (in this case the model potential is smooth).
    As a corollary we obtain the existence of singular Kähler-Einstein metrics with prescribed singularities on general type and Calabi-Yau manifolds.
    This is a joint work with Tamas Darvas and Chinh Lu.

    Keywords : complex Monge-Ampère equations; compact Kähler manifolds; singularities; Kähler-Einstein metrics; Calabi-Yau manifolds

    MSC Codes :
    32J27 - Compact Kähler manifolds: generalizations, classification
    32Q20 - Kähler-Einstein manifolds
    32W20 - Complex Monge-Ampère operators
    32Q15 - Kähler manifolds

      Information on the Video

      Film maker : Hennenfent, Guillaume
      Language : English
      Available date : 31/01/2018
      Conference Date : 18/01/2018
      Subseries : Research talks
      arXiv category : Differential Geometry ; Analysis of PDEs ; Complex Variables
      Mathematical Area(s) : Algebraic & Complex Geometry ; PDE ; Analysis and its Applications
      Format : MP4 (.mp4) - HD
      Video Time : 00:54:19
      Targeted Audience : Researchers
      Download : https://videos.cirm-math.fr/2018-01-18_DiNezza.mp4

    Information on the Event

    Event Title : Constant scalar curvature metrics in Kähler and Sasaki geometry / Métriques à courbure scalaire constante en géométrie Kählérienne et Sasakienne
    Event Organizers : Auvray, Hugues ; Huang, Hongnian ; Keller, Julien ; Legendre, Eveline ; Sena-Dias, Rosa
    Dates : 15/01/2018 - 19/01/2018
    Event Year : 2018
    Event URL : https://conferences.cirm-math.fr/1750.html

    Citation Data

    DOI : 10.24350/CIRM.V.19263003
    Cite this video as: Di Nezza, Eleonora (2018). Complex Monge-Ampere equations with prescribed singularities​. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19263003
    URI : http://dx.doi.org/10.24350/CIRM.V.19263003

    See Also

    Bibliography

    • Darvas, T., Di Nezza, E., & Lu, C.H. (2017). Monotonicity of non-pluripolar products and complex Monge-Ampère equations with prescribed singularity. - https://arxiv.org/abs/1705.05796



    Bookmarks Report an error
    Close