En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Project evaluation under uncertainty

Bookmarks Report an error
Multi angle
Authors : Zubelli, Jorge P. (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Industrial strategic decisions have evolved tremendously in the last decades towards a higher degree of quantitative analysis. Such decisions require taking into account a large number of uncertain variables and volatile scenarios, much like financial market investments. Furthermore, they can be evaluated by comparing to portfolios of investments in financial assets such as in stocks, derivatives and commodity futures. This revolution led to the development of a new field of managerial science known as Real Options.
The use of Real Option techniques incorporates also the value of flexibility and gives a broader view of many business decisions that brings in techniques from quantitative finance and risk management. Such techniques are now part of the decision making process of many corporations and require a substantial amount of mathematical background. Yet, there has been substantial debate concerning the use of risk neutral pricing and hedging arguments to the context of project evaluation. We discuss some alternatives to risk neutral pricing that could be suitable to evaluation of projects in a realistic context with special attention to projects dependent on commodities and non-hedgeable uncertainties. More precisely, we make use of a variant of the hedged Monte-Carlo method of Potters, Bouchaud and Sestovic to tackle strategic decisions. Furthermore, we extend this to different investor risk profiles. This is joint work with Edgardo Brigatti, Felipe Macias, and Max O. de Souza.
If time allows we shall also discuss the situation when the historical data for the project evaluation is very limited and we can make use of certain symmetries of the problem to perform (with good estimates) a nonintrusive stratified resampling of the data. This is joint work with E. Gobet and G. Liu.

MSC Codes :
91B06 - Decision theory
91B24 - Price theory and market structure
91B26 - Market models (auctions, bargaining, bidding, selling, etc.)
91B30 - Risk theory, insurance

Additional resources :
http://www.lpma-paris.fr/pageperso/benezet/CEMRACS2017/Zubelli.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 31/07/17
    Conference Date : 31/07/17
    Subseries : Research talks
    arXiv category : Quantitative Finance
    Mathematical Area(s) : Mathematics in Science & Technology
    Format : MP4 (.mp4) - HD
    Video Time : 00:56:53
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2017-07-31_Zubelli.mp4

Information on the Event

Event Title : CEMRACS: Numerical methods for stochastic models: control, uncertainty quantification, mean-field / CEMRACS : Méthodes numériques pour équations stochastiques : contrôle, incertitude, champ moyen
Event Organizers : Bouchard, Bruno ; Chassagneux, Jean-François ; Delarue, François ; Gobet, Emmanuel ; Lelong, Jérôme
Dates : 17/07/17 - 25/08/17
Event Year : 2017
Event URL : http://conferences.cirm-math.fr/1556.html

Citation Data

DOI : 10.24350/CIRM.V.19204803
Cite this video as: Zubelli, Jorge P. (2017). Project evaluation under uncertainty. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19204803
URI : http://dx.doi.org/10.24350/CIRM.V.19204803

See Also

Bibliography

  • Brennan, M.J., & Schwartz, E.S. (1985). Evaluating natural resource investments. The Journal of Business, 58(2), 135–-157 - http://www.jstor.org/stable/2352967

  • Brigatti, E., Macias, F., Souza M.O., & Zubelli J.P. (2015). A hedged Monte Carlo approach to real option pricing. In R. Aïd, M. Ludkovski, & R. Sircar (Eds.), Commodities, Energy and Environmental Finance (pp. 275-299). New York: Springer - http://dx.doi.org/10.1007/978-1-4939-2733-3_10

  • Dixit, A. (1989). Entry and exit decisions under uncertainty. Journal Of Political Economy, 97(3), 620-–638 - http://dx.doi.org/10.1086/261619

  • Fölmer, H., & Schied, A. (2016). Stochastic finance. An introduction in discrete time. 4th revised edition. Berlin: de Gruyter - http://dx.doi.org/10.1515/9783110463453

  • Gobet, E., & Turkedjiev, P. (2016). Linear regression MDP scheme for discrete backward stochastic differential equations under general conditions. Mathematics of Computation, 85(299), 1359-–1391 - https://doi.org/10.1090/mcom/3013

  • Hubalek, F., & Schachermayer, W. (2001). The limitations of no-arbitrage arguments for real options. International Journal of Theoretical and Applied Finance, 4(2), 361-373 - http://dx.doi.org/10.1142/S0219024901001024

  • Ingersoll, J.E., & Ross, S.A. (1992). Waiting to invest: investment and uncertainty. Journal of Business, 65(1), 1–-29 - http://www.jstor.org/stable/2353172

  • Liu, G., Gobet, E., & Zubelli, J. (2016). A non-intrusive stratified resampler for regression monte carlo: application to solving non-linear equations. - https://hal-polytechnique.archives-ouvertes.fr/hal-01291056

  • Ma, J., & Yong, J. (1999). Forward-backward stochastic differential equations and their applications. Berlin: Springer - http://dx.doi.org/10.1007/978-3-540-48831-6

  • MCdonald, R., & Siegel, D. (1986). The value of waiting to invest. Quarterly Journal Of Economics, 101(4), 707–-727 - https://doi.org/10.2307/1884175

  • Myers, S.C. (1977). Determinants of corporate borrowing. Journal of Financial Economics, 5(2), 147–-175 - https://doi.org/10.1016/0304-405X(77)90015-0

  • Paddock, J.L., Siegel, D.R., & Smith, J.L. (1988). Option valuation of claims on real assets: the case of offshore petroleum leases. Quarterly Journal Of Economics, 103(3), 479–-508 - https://doi.org/10.2307/1885541

  • Pardoux E., & Rascanu A. (2014). Stochastic differential equations, backward SDEs, partial differential equations. Cham: Springer - http://dx.doi.org/10.1007/978-3-319-05714-9

  • Pindyck, R.S. (1991). Irreversibility, uncertainty, and investment. Journal Of Economic Literature, 29(3), 1110-–1148 -

  • Potters, M., Bouchaud, J.-P., & Sestovic, D. (2001). Hedged Monte-Carlo: low variance derivative pricing with objective probabilities. Physica A, 289(3-4), 517-525 - https://doi.org/10.1016/S0378-4371(00)00554-9

  • Trigeorgis, L., & Mason, S.P. (1987). Valuing managerial flexibility. Midland Corporate Finance Journal, 5(1), 14–-21 -



Bookmarks Report an error