En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Trisections diagrams and surgery operations on embedded surfaces​

Bookmarks Report an error
Multi angle
Authors : Gay, David (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Various surgery operations on dimension four begin with a 4–manifold $X$ and an embedded surface $S$, then remove a neighborhood of $S$ and replace it with something else to produce an interesting new 4–manifold. In a few standard surgery constructions, especially the Gluck twist operation, I will show how, given a trisection diagram of $X$ with decorations that describe the embedded surface $S$, to produce a trisection diagram for the new 4–manifold.
This is joint work with Jeff Meier.

MSC Codes :
57M50 - Geometric structures on low-dimensional manifolds
57R17 - Symplectic and contact topology
57R45 - Singularities of differentiable mappings
57R65 - Surgery and handlebodies

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 18/02/2018
    Conference Date : 13/02/2018
    Subseries : Research talks
    arXiv category : Geometric Topology
    Mathematical Area(s) : Topology ; Geometry
    Format : MP4 (.mp4) - HD
    Video Time : 01:03:10
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2018-02-13_Gay.mp4

Information on the Event

Event Title : Knotted embeddings in dimensions 3 and 4 / Plongements noués en dimension 3 et 4
Event Organizers : Audoux, Benjamin ; Baader, Sebastian ; Lecuona, Ana G.
Dates : 12/02/2018 - 16/02/2018
Event Year : 2018
Event URL : https://conferences.cirm-math.fr/1893.html

Citation Data

DOI : 10.24350/CIRM.V.19357303
Cite this video as: Gay, David (2018). Trisections diagrams and surgery operations on embedded surfaces​. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19357303
URI : http://dx.doi.org/10.24350/CIRM.V.19357303

See Also

Bibliography



Bookmarks Report an error