Authors : Mangolte, Frédéric (Author of the conference)
CIRM (Publisher )
Abstract :
We study the following real version of the famous Abhyankar-Moh Theorem: Which real rational map from the affine line to the affine plane, whose real part is a non-singular real closed embedding of $\mathbb{R}$ into $\mathbb{R}^2$, is equivalent, up to a birational diffeomorphism of the plane, to the linear one? We show that in contrast with the situation in the categories of smooth manifolds with smooth maps and of real algebraic varieties with regular maps where there is only one equivalence class up to isomorphism, there are plenty of non-equivalent smooth rational closed embeddings up to birational diffeomorphisms. Some of these are simply detected by the non-negativity of the real Kodaira dimension of the complement of their images. But we also introduce finer invariants derived from topological properties of suitable fake real planes associated to certain classes of such embeddings.
(Joint Work with Adrien Dubouloz).
Keywords : real algebraic model; affine line; rational fibration; birational diffeomorphism; Abhyankar-Moh
MSC Codes :
14E05
- Rational and birational maps
14J26
- Rational and ruled surfaces
14P25
- Topology of real algebraic varieties
14R05
- Classification of affine varieties
14R25
- Affine fibrations
Film maker : Hennenfent, Guillaume
Language : English
Available date : 09/01/2019
Conference Date : 20/12/2018
Subseries : Research talks
arXiv category : Algebraic Geometry
Mathematical Area(s) : Algebraic & Complex Geometry
Format : MP4 (.mp4) - HD
Video Time : 00:47:22
Targeted Audience : Researchers
Download : https://videos.cirm-math.fr/2018-12-20_mangolte.mp4
|
Event Title : Algebraic geometry and complex geometry / Géométrie algébrique et géométrie complexe Event Organizers : Benoist, Olivier ; Pasquier, Boris Dates : 17/12/2018 - 21/12/2018
Event Year : 2018
Event URL : https://conferences.cirm-math.fr/1858.html
DOI : 10.24350/CIRM.V.19484803
Cite this video as:
Mangolte, Frédéric (2018). Algebraic models of the line in the real affine plane. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19484803
URI : http://dx.doi.org/10.24350/CIRM.V.19484803
|
See Also
Bibliography
- Dubouloz, A., & Mangolte, F. (2018). Algebraic models of the line in the real affine plane. 〈arXiv:1805.11406〉 - https://arxiv.org/abs/1805.11406
- Dubouloz, A., & Mangolte, F. (2017). Fake real planes: exotic affine algebraic models of $\mathbb{R}^2$. Selecta Mathematica, 23(3), 1619-1668 - http://dx.doi.org/10.1007/s00029-017-0326-6
- Dubouloz, A., & Mangolte, F. (2016). Real frontiers of fake planes. European Journal of Mathematics, 2(1), 140-168 - http://dx.doi.org/10.1007/s40879-015-0087-8
- Mangolte, F. (2017) Variétés algébriques réelles. Paris: Société Mathématique de France - https://smf.emath.fr/publications/varietes-algebriques-reelles