En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

A geometric $R$-matrix for the Hilbert scheme of points on a general surface

Bookmarks Report an error
Multi angle
Authors : Arbesfeld, Noah (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : We explain how to use a Virasoro algebra to construct a solution to the Yang-Baxter equation acting in the tensor square of the cohomology of the Hilbert scheme of points on a generalsurface $S$. In the special case where the surface $S$ is $C^2$, the construction appears in work of Maulik and Okounkov on the quantum cohomology of symplectic resolutions and recovers their $R$-matrix constructed using stable envelopes.

MSC Codes :
17B05 - Structure theory of Lie algebras
17B37 - Quantum groups and related deformations
17B62 - Lie bialgebras; Lie coalgebras
17B68 - Virasoro and related algebras

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 24/04/2019
    Conference Date : 05/04/2019
    Subseries : Research talks
    arXiv category : Algebraic Geometry
    Mathematical Area(s) : Algebraic & Complex Geometry ; Algebra
    Format : MP4 (.mp4) - HD
    Video Time : 01:02:49
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-04-05_Arbesfeld.mp4

Information on the Event

Event Title : Symplectic representation theory / Théorie symplectique des représentations
Event Organizers : Bellamy, Gwyn ; Ben-Zvi, David ; Schedler, Travis ; Schiffmann, Olivier ; Shan, Peng
Dates : 01/04/2019 - 05/04/2019
Event Year : 2019
Event URL : https://conferences.cirm-math.fr/1956.html

Citation Data

DOI : 10.24350/CIRM.V.19513803
Cite this video as: Arbesfeld, Noah (2019). A geometric $R$-matrix for the Hilbert scheme of points on a general surface. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19513803
URI : http://dx.doi.org/10.24350/CIRM.V.19513803

See Also

Bibliography



Bookmarks Report an error