En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Moments of random matrices and hypergeometric orthogonal polynomials

Bookmarks Report an error
Multi angle
Authors : Mezzadri, Francesco (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : We establish a new connection between moments of n×n random matrices $X_{n}$ and hypergeometric orthogonal polynomials. Specifically, we consider moments $\mathbb{E}\mathrm{Tr} X_n^{-s}$ as a function of the complex variable $s\in\mathbb{C}$, whose analytic structure we describe completely. We discover several remarkable features, including a reflection symmetry (or functional equation), zeros on a critical line in the complex plane, and orthogonality relations. In each of the classical ensembles of random matrix theory (Gaussian, Laguerre, Jacobi) we characterise the moments in terms of the Askey scheme of hypergeometric orthogonal polynomials. We also calculate the leading order n→∞ asymptotics of the moments and discuss their symmetries and zeroes. We discuss aspects of these phenomena beyond the random matrix setting, including the Mellin transform of products and Wronskians of pairs of classical orthogonal polynomials. When the random matrix model has orthogonal or symplectic symmetry, we obtain a new duality formula relating their moments to hypergeometric orthogonal polynomials. This is work in collaboration with Fabio Cunden, Neil O' Connell and Nick Simm.

MSC Codes :
05E05 - Symmetric functions and generalizations
33C45 - Orthogonal polynomials and functions (Chebyshev, Legendre, Gegenbauer, Jacobi, Laguerre, Hermite, Hahn, etc.)
15B52 - Random matrices

Additional resources :
https://www.cirm-math.fr/RepOrga/2104/Slides/Mezzadri2019.pdf

    Information on the Video

    Film maker : Recanzone, Luca
    Language : English
    Available date : 09/05/2019
    Conference Date : 10/04/2019
    Subseries : Research talks
    arXiv category : Mathematical Physics ; Classical Analysis and ODEs ; Complex Variables
    Mathematical Area(s) : Mathematical Physics ; Geometry
    Format : MP4 (.mp4) - HD
    Video Time : 00:51:34
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-04-10_Mezzadri.mp4

Information on the Event

Event Title : Chaire Jean-Morlet : Equation intégrable aux données initiales aléatoires / Jean-Morlet Chair : Integrable Equation with Random Initial Data
Event Organizers : Basor, Estelle ; Bufetov, Alexander ; Cafasso, Mattia ; Grava, Tamara ; McLaughlin, Ken
Dates : 08/04/2019 - 12/04/2019
Event Year : 2019
Event URL : https://www.chairejeanmorlet.com/2104.html

Citation Data

DOI : 10.24350/CIRM.V.19516103
Cite this video as: Mezzadri, Francesco (2019). Moments of random matrices and hypergeometric orthogonal polynomials. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19516103
URI : http://dx.doi.org/10.24350/CIRM.V.19516103

See Also

Bibliography

  • Cunden, F. D., Mezzadri, F., O'Connell, N., & Simm, N. (2019). Moments of random matrices and hypergeometric orthogonal polynomials. Communications in Mathematical Physics, 1-55. - https://arxiv.org/abs/1805.08760



Bookmarks Report an error