En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

A statistical physics approach to the sine beta process

Bookmarks Report an error
Multi angle
Authors : Maïda, Mylène (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : The universality properties of the Sine process (corresponding to inverse temperature beta equal to 2) are now well known. More generally, a family of point processes have been introduced by Valko and Virag and shown to be the bulk limit of Gaussian beta ensembles, for any positive beta. They are defined through a one-parameter family of SDEs coupled by a two-dimensional Brownian motion (or more recently as the spectrum of a random operator). Through these descriptions, some properties have been derived by Holcomb, Paquette, Valko, Virag and others but there is still much to understand.
In a work with David Dereudre, Adrien Hardy (Université de Lille) and Thomas Leblé (Courant Institute, New York), we use tools from classical statistical mechanics based on DLR equations to give a completely different description of the Sine beta process and derive some properties, such as rigidity and tolerance.

MSC Codes :
60B20 - Random matrices (probabilistic aspects)
60G55 - Point processes

Additional resources :
https://www.cirm-math.fr/RepOrga/2104/Slides/maida-CIRM2019.pdf

    Information on the Video

    Film maker : Recanzone, Luca
    Language : English
    Available date : 09/05/2019
    Conference Date : 11/04/2019
    Subseries : Research talks
    arXiv category : Probability ; Mathematical Physics
    Mathematical Area(s) : Mathematical Physics ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:53:03
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-04-11_Maïda.mp4

Information on the Event

Event Title : Chaire Jean-Morlet : Equation intégrable aux données initiales aléatoires / Jean-Morlet Chair : Integrable Equation with Random Initial Data
Event Organizers : Basor, Estelle ; Bufetov, Alexander ; Cafasso, Mattia ; Grava, Tamara ; McLaughlin, Ken
Dates : 08/04/2019 - 12/04/2019
Event Year : 2019
Event URL : https://www.chairejeanmorlet.com/2104.html

Citation Data

DOI : 10.24350/CIRM.V.19516903
Cite this video as: Maïda, Mylène (2019). A statistical physics approach to the sine beta process. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19516903
URI : http://dx.doi.org/10.24350/CIRM.V.19516903

See Also

Bibliography



Bookmarks Report an error