En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

The speed of a second class particle in the ASEP

Bookmarks Report an error
Multi angle
Authors : Saenz, Axel (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : In this talk, we discuss the application of the Yang-Baxter equation for the quantum affine lie algebra $U_{q} \left (\widehat{ {\mathfrak{sl}}_{n+1}} \right )$ to interacting particle systems.
The asymmetric simple exclusion process (ASEP) is a continuous-time Markov process of interacting particles on the integer lattice. We distinguish particles to be either a first class or a second class particle. In particular, the second class particles are blocked in their movement by all other particles, while the first class particles are only blocked by other first class particles. We consider the step initial conditions so that all non-negative integer positions are occupied and all other positions are vacant at time zero. Moreover, we take exactly L second class particles to be located at the very front of the configuration at time zero. Then, using recent results of Tracy-Widom (2017) and Borodin-Wheeler (2018), we compute the asymptotic speed of the leftmost second class particle.
This is joint work with Promit Ghosal (Columbia University) and Ethan Zell (University of Virginia) in arXiv:1903.09615.

MSC Codes :
34E20 - Singular perturbations, turning point theory, WKB methods
60B20 - Random matrices (probabilistic aspects)
34M50 - nverse problems (Riemann-Hilbert, inverse differential Galois, etc.)

Additional resources :
https://www.cirm-math.fr/RepOrga/2104/Slides/Presentation(AxelSaenz).pdf

    Information on the Video

    Film maker : Recanzone, Luca
    Language : English
    Available date : 09/05/2019
    Conference Date : 11/04/2019
    Subseries : Research talks
    arXiv category : Probability ; Mathematical Physics
    Mathematical Area(s) : Mathematical Physics ; Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:41:20
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-04-11_Saenz.mp4

Information on the Event

Event Title : Chaire Jean-Morlet : Equation intégrable aux données initiales aléatoires / Jean-Morlet Chair : Integrable Equation with Random Initial Data
Event Organizers : Basor, Estelle ; Bufetov, Alexander ; Cafasso, Mattia ; Grava, Tamara ; McLaughlin, Ken
Dates : 08/04/2019 - 12/04/2019
Event Year : 2019
Event URL : https://www.chairejeanmorlet.com/2104.html

Citation Data

DOI : 10.24350/CIRM.V.19517503
Cite this video as: Saenz, Axel (2019). The speed of a second class particle in the ASEP. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19517503
URI : http://dx.doi.org/10.24350/CIRM.V.19517503

See Also

Bibliography

  • Ghosal, P., Saenz, A., & Zell, E. C. (2019). Limiting speed of a second class particle in ASEP. arXiv preprint arXiv:1903.09615. - https://arxiv.org/abs/1903.09615

  • Tracy, C. A., & Widom, H. (2017). Blocks in the asymmetric simple exclusion process. Journal of Mathematical Physics, 58(12), 123302. - https://arxiv.org/abs/1711.08094

  • Borodin, A., & Wheeler, M. (2018). Coloured stochastic vertex models and their spectral theory. arXiv preprint arXiv:1808.01866. - https://arxiv.org/abs/1808.01866



Bookmarks Report an error