En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
2

Semiclassical behaviour of quantum eigenstates - lecture 1

Bookmarks Report an error
Multi angle
Authors : Rivière, Gabriel (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Given a quantum Hamiltonian, I will explain how the dynamical properties of the underlying classical Hamiltonian affect the behaviour of quantum eigenstates in the semiclassical limit. I will mostly focus on two opposite dynamical paradigms: completely integrable systems and chaotic ones. I will introduce tools from microlocal analysis and show how to use them in order to illustrate the classical-quantum correspondance and to compare properties of completely integrable and chaotic systems.

MSC Codes :
35P20 - Asymptotic distribution of eigenvalues and eigenfunctions for PD operators
37D40 - Dynamical systems of geometric origin and hyperbolicity (geodesic and horocycle flows, etc.)
37N20 - Dynamical systems in other branches of physics
58J50 - Spectral problems; spectral geometry; scattering theory
81Q50 - Quantum chaos [See also 37Dxx]
58J51 - Relations between spectral theory and ergodic theory, e.g. quantum unique ergodicity

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 24/05/2019
    Conference Date : 22/04/2019
    Subseries : Research School
    arXiv category : Dynamical Systems ; Mathematical Physics
    Mathematical Area(s) : Mathematical Physics ; Dynamical Systems & ODE
    Format : MP4 (.mp4) - HD
    Video Time : 01:32:23
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-04-22_Riviere_Part1.mp4

Information on the Event

Event Title : Du quantique au classique / From Quantum to Classical
Event Organizers : Nonnenmacher, Stéphane ; Sabin, Julien
Dates : 22/04/2019 - 26/04/2019
Event Year : 2019
Event URL : https://conferences.cirm-math.fr/1982.html

Citation Data

DOI : 10.24350/CIRM.V.19527603
Cite this video as: Rivière, Gabriel (2019). Semiclassical behaviour of quantum eigenstates - lecture 1. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19527603
URI : http://dx.doi.org/10.24350/CIRM.V.19527603

See Also

Bibliography

  • R. Abraham and J.E. Marsden. Foundations of mechanics. Benjamin/Cummings Publishing Co., Inc., Advanced Book Program, Reading, Mass., 1978. Second edition, revised and enlarged, With the assistance of Tudor Ratiu and Richard Cushman. -

  • N. Anantharaman. Entropy and the localization of eigenfunctions. Ann. of Math. (2), 168(2):435-475, 2008. - http://www.jstor.org/stable/40345418

  • N. Anantharaman, C. Fermanian-Kammerer, and F. Macia. Semiclassical completely integrable systems: long-time dynamics and observability via two-microlocal Wigner measures. Amer. J. Math., 137(3):577-638, 2015 - https://arxiv.org/abs/1403.6088v1

  • N. Anantharaman, H. Koch, and S. Nonnenmacher. Entropy of eigenfunctions. New trends in Mathematical Physics, Proceedings of ICMP 2006, pages 1-22, 2009. - https://arxiv.org/abs/0704.1564v1

  • N. Anantharaman, M. Leautaud, and F. Macia. Wigner measures and observability for the Schrodinger equation on the disk. Invent. Math., 206(2):485-599, 2016 - https://arxiv.org/abs/1406.0681v2

  • N. Anantharaman and F. Macia. Semiclassical measures for the Schrodinger equation on the torus. J. Eur. Math. Soc. (JEMS), 16(6):1253-1288, 2014 - https://arxiv.org/abs/1005.0296v2

  • N. Anantharaman and S. Nonnenmacher. Entropy of semiclassical measures of the Walsh-quantized baker's map. Ann. Henri Poincaré, 8(1):37-74, 2007. - https://doi.org/10.1007/s00023-006-0299-z

  • N. Anantharaman and S. Nonnenmacher. Half-delocalization of eigenfunctions for the Laplacian on an Anosov manifold. Ann. Inst. Fourier (Grenoble), 57(7):2465{2523, 2007. Festival Yves Colin de Verdière. - https://doi.org/10.5802/aif.2340

  • N. Anantharaman and L. Silberman. A haar component for quantum limits on locally symmetric spaces. Israel J. Math., 195(1):393-447, 2013. - https://doi.org/10.1007/s11856-012-0133-x SMASH

  • D. V. Anosov. Geodesic flows on closed Riemannian manifolds of negative curvature. Trudy Mat. Inst. Steklov., 90:209, 1967. -

  • V. Arnaiz and F. Macia. Concentration of quasimodes for perturbed harmonic oscillators. 2019. Preprint. -

  • N. Aronszajn. A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J. Math. Pures Appl., 36:235-249, 1957 -

  • D. Azagra and F. Macia. Concentration of symmetric eigenfunctions. Nonlinear Analysis, 73(3):683-688, 2010 - https://arxiv.org/abs/1004.2596v1

  • D. Bambusi, S. Graffi, and T. Paul. Long time semiclassical approximation of quantum flows: a proof of the Ehrenfest time. Asymptot. Anal., 21(2):149-160, 1999. - https://arxiv.org/abs/math-ph/9805018v1

  • P.H. Bérard. On the wave equation on a compact Riemannian manifold without conjugate points. Math. Z., 155(3):249{276, 1977 - https://doi.org/10.1007/BF02028444

  • M. Berry. Regular and irregular semiclassical wave functions. J.Phys.A, 10:2083-2091, 1977. - https://doi.org/10.1088/0305-4470/10/12/016 SMASH

  • A.L. Besse. Manifolds all of whose geodesics are closed, volume 93 of Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas]. Springer-Verlag, Berlin-New York, 1978. With appendices by D. B. A. Epstein, J.-P. Bourguignon, L. Berard-Bergery, M. Berger and J. L. Kazdan -

  • M.D. Blair and C.D. Sogge. Renfined and microlocal kakeya-nikodym bounds of eigenfunctions in higher dimensions. Comm. Math. Phys., 356(2):501-533, 2017 - https://doi.org/10.1007/s00220-017-2977-8

  • S. Bocherer, P. Sarnak, and R. Schulze-Pillot. Arithmetic and equidistribution of measures on the sphere. Comm. Math. Phys., 242(1-2):67-80, 2003. - https://doi.org/10.1007/s00220-003-0922-5 SMASH

  • J. Bourgain, N. Burq, and M. Zworski. Control for Schrodinger operators on 2-tori: rough potentials. J. Eur. Math. Soc. (JEMS), 15(5):1597-1628, 2013 - http://dx.doi.org/10.4171/JEMS/399

  • J. Bourgain and S. Dyatlov. Spectral gaps without the pressure condition. Ann. of Maths, 187(3):825-867, 2018 - https://doi.org/10.4007/annals.2018.187.3.5

  • J. Bourgain and E. Lindenstrauss. Entropy of quantum limits. Comm. Math. Phys., 233(1):153-171, 2003. - https://doi.org/10.1007/s00220-002-0770-8

  • L. Boutet de Monvel. Convergence dans le domaine complexe des series de fonctions propres. C. R. Acad. Sci. Paris A-B, 287(13):A855-A856, 1978. - www.numdam.org/article/JEDP_1979____A3_0.pdf

  • A. Bouzouina and S. De Bièvre. Equipartition of the eigenfunctions of quantized ergodic maps on the torus. Comm. Math. Phys., 178(1):83-105, 1996. - https://doi.org/10.1007/BF02104909

  • A. Bouzouina and D. Robert. Uniform semiclassical estimates for the propagation of quantum observables. Duke Math. J., 111(2):223-252, 2002 - http://dx.doi.org/10.1215/S0012-7094-02-11122-3

  • R. Bowen and D. Ruelle. The ergodic theory of axiom a flows. Inv. Math., 29:181-202, 1975. - https://doi.org/10.1007/BF01389848

  • M. Brin and A. Katok. On local entropy. Lecture Notes in Mathematic. Geometric Dynamics - https://doi.org/10.1007/BFb0061408

  • S. Brooks, E. Le Masson, and E. Lindenstrauss. Quantum ergodicity and averaging operators on the sphere. Int. Math. Res. Not. IMRN, (19):6034-6064, 2016 - https://doi.org/10.1093/imrn/rnv337

  • S. Brooks and E. Lindenstrauss. Joint quasimodes, positive entropy, and quantum unique ergodicity. Invent. Math., 198(1):219-259, 2014. - https://doi.org/10.1093/imrn/rnv050

  • L.A. Bunimovich. On the ergodic properties of nowhere dispersing billiards. Comm. Math. Phys., 65:295-312, 1979 - https://projecteuclid.org/euclid.cmp/1103904878

  • N. Burq and G. Lebeau. Injections de Sobolev probabilistes et applications. Ann. Sci. Ec. Norm. Super. (4), 46(6):917-962, 2013 - https://doi.org/10.24033/asens.2206

  • N. Burq and M. Zworski. Eigenfunctions for partially rectangular billiards. 2003. Preprint, unpublished - https://arxiv.org/abs/math/0312098v1

  • N. Burq and M. Zworski. Control for Schrodinger operators on tori. Math. Res. Lett., 19(2):309-324, 2012 - https://arxiv.org/abs/1106.1412v1

  • Y. Canzani and J. Galkowski. A novel approach to quantitative improvements for eigenfunction averages. arXiv preprint - https://arxiv.org/abs/1809.06296v3

  • H. Christianson. Semiclassical non-concentration near hyperbolic orbits. J. Funct. Anal., 246(2):145-195, 2007 - https://doi.org/10.1016/j.jfa.2006.09.012

  • H. Christianson. Quantum monodromy and nonconcentration near a closed semi-hyperbolic orbit. Trans. Amer. Math. Soc., 363(7):3373-3438, 2011. - http://www.ams.org/journals/tran/2011-363-07/S0002-9947-2011-05321-3/S0002-9947-2011-05321-3.pdf

  • Y. Colin de Verdiere. Sur le spectre des operateurs elliptiquesa bicaracteristiques toutes periodiques. Comment. Math. Helv., 54(3):508-522, 1979 -

  • Y. Colin de Verdiere. Ergodicite et fonctions propres du laplacien. Comm. Math. Phys., 102(3):497-502, 1985 - https://doi.org/10.1007/BF01209296

  • Y. Colin de Verdiere, L. Hillairet, and E. Trelat. Spectral asymptotics for sub-riemannian laplacians, i: Quantum ergodicity and quantum limits in the 3-dimensional contact case. Duke. Math. J., 167(1):109-174, 2018 - http://dx.doi.org/10.1215/00127094-2017-0037

  • R. Cooke. A cantor-lebesgue theorem in two dimensions. Proc. AMS, 30(3):547-266, 1971 - https://doi.org/10.1090/S0002-9939-1971-0282134-X

  • H.O. Cordes. Uber die Bestimmtheit der Losungen elliptischer Di erentialgleichungen durch Anfangsvorgaben. Nachr. Akad. Wiss. Gottingen, Math. Phys. K1. IIa, 11:239-258, 1956. -

  • J. J. Duistermaat and V. W. Guillemin. The spectrum of positive elliptic operators and periodic bicharacteristics. Invent. Math., 29(1):39-79, 1975. - https://doi.org/10.1007/978-3-662-03030-1_5

  • S. Dyatlov. Control of eigenfunctions on hyperbolic surfaces: an application of fractal uncertainty principle. In Journees  Equations aux Derivees Partielles 2017. Cedram, 2017. - http://dx.doi.org/10.5802/jedp.654

  • S. Dyatlov. An introduction to fractal uncertainty principle. 2019. Preprint arXiv:1903.02599 - https://arxiv.org/abs/1903.02599v1

  • S. Dyatlov and C. Guillarmou. Microlocal limits of plane waves and Eisenstein functions. Ann. Sci. Ec. Norm. Super. (4), 47(2):371-448, 2014. - http://dx.doi.org/10.24033/asens.2217

  • S. Dyatlov and L. Jin. Semiclassical measures on hyperbolic surfaces have full support. Acta Mathematica, 220:297-339, 2018 - http://dx.doi.org/10.4310/ACTA.2018.v220.n2.a3

  • S. Dyatlov and J. Zahl. Spectral gaps, additive energy, and a fractal uncertainty principle. GAFA, 26(4):1011-1094, 2016. - https://doi.org/10.1007/s00039-016-0378-3

  • M. Einsiedler and T. Ward. Ergodic theory with a view towards number theory, volume 259 of Graduate Texts in Mathematics. Springer-Verlag London, Ltd., London, 2011. -

  • A. Einstein. Zum quantensatz von Sommerfeld und Epstein. Deutsche Phys. Ges. Ver., 19:82-92, 1917. -

  • F. Faure, S. Nonnenmacher, and S. De Bievre. Scarred eigenstates for quantum cat maps of minimal periods. Comm. Math. Phys., 239(3):449-492, 2003. - https://doi.org/10.1007/s00220-003-0888-3

  • R.P. Feynman, R.B. Leighton, and M. Sands. The Feynman lectures on physics. Vol. 3: Quantum mechanics. Addison-Wesley Publishing Co., Inc., Reading, Mass.-London, 1965. -

  • J. Galkowski and J.A. Toth. Eigenfunction scarring and improvements in l1 bounds. Analysis and PDE, 11(3):801-812, 2017. - https://msp.org/apde/2018/11-3/apde-v11-n3-p09-p.pdf

  • P. Gerard. Mesures semi-classiques et ondes de Bloch. In Seminaire sur les Equations aux Derivees Partielles, 1990-1991, pages Exp. No. XVI, 19. Ecole Polytech., Palaiseau, 1991. -

  • P. Gerard. Microlocal defect measures. Comm. Partial Differential Equations, 16(11):1761-1794,1991. - https://doi.org/10.1080/03605309108820822

  • P. Gerard and E. Leichtnam. Ergodic properties of eigenfunctions for the Dirichlet problem. Duke Math. J., 71(2):559-607, 1993. - http://dx.doi.org/10.1215/S0012-7094-93-07122-0

  • S. Gomes. Percival's conjecture for the Bunimovich mushroom billiard. Nonlinearity, 31(9):4108-4136, 2018 - https://doi.org/10.1088/1361-6544/aa776f

  • V. Guillemin. The Radon transform on Zoll surfaces. Advances in Math., 22(1):85-119, 1976 - https://doi.org/10.1016/0001-8708(76)90139-0

  • Boris Gutkin. Entropic bounds on semiclassical measures for quantized one-dimensional maps. Comm. Math. Phys., 294(2):303-342, 2010. - https://doi.org/10.1007/s00220-009-0952-8

  • X. Han. Small scale quantum ergodicity in negatively curved manifolds. Nonlinearity, 28(9):3263-3288, 2015 - https://doi.org/10.1088/0951-7715/28/9/3263

  • A. Hassell. Ergodic billiards that are not quantum unique ergodic, with an appendix by the author and luc hillairet. Ann. of Math. (2), 171(1):605-619, 2010. - http:/doi.org/10.4007/annals.2010.171.605

  • A. Hassell and S. Zelditch. Quantum ergodicity of boundary values of eigenfunctions. Comm. Math. Phys., 248(1):119-168, 2004. - http://dx.doi.org/10.1007/s00220-004-1070-2

  • B. Hel er, A. Martinez, and D. Robert. Ergodicite et limite semi-classique. Comm. Math. Phys., 109(2):313-326, 1987. - https://projecteuclid.org/euclid.cmp/1104116844

  • H. Hezari and G. Rivière. Lp norms, nodal sets, and quantum ergodicity. Adv. Math., 290:938-966, 2016. - https://doi.org/10.1016/j.aim.2015.10.027

  • H. Hezari and G. Rivière. Quantitative equidistribution properties of toral eigenfunctions. J. of Spectral Theory, 7:471-485, 2017 - http://dx.doi.org/10.4171/JST/169

  • H. Hezari and G. Rivière. Equidistribution of toral eigenfunctions along hypersurfaces. Rev. Mat. Iberoam., 2018 - https://arxiv.org/abs/1801.07858v2

  • E. Humbert, Y. Privat, and E. Trélat. Observability properties of the homogeneous wave equation on a closed manifold. 2016. Preprint arXiv:1607.01535 - https://arxiv.org/abs/1607.01535v2

  • S. Jaffard. Contrôle interne exact des vibrations d'une plaque rectangulaire. Portugal. Math., 47(4):423-429, 1990. - http://eudml.org/doc/115731

  • D. Jakobson. Quantum limits on flat tori. Ann. of Math. (2), 145(2):235-266, 1997. - http://dx.doi.org/10.2307/2951815

  • D. Jakobson, Y. Safarov, A. Strohmaier, and Y. Colin de Verdière. The semiclassical theory of discontinuous systems and ray-splitting billiards. American Journal of Mathematics, 137(4):859-906, 2015. - https://doi.org/10.1353/ajm.2015.0027

  • D. Jakobson and S. Zelditch. Classical limits of eigenfunctions for some completely integrable systems. In Emerging applications of number theory (Minneapolis, MN, 1996), volume 109 of IMA Vol. Math. Appl., pages 329-354. Springer, New York, 1999. - http://dx.doi.org/10.1007/978-1-4612-1544-8_13

  • V. Jarnik. Uber die Gitterpunkte auf konvexen Kurven. Math. Z., 24(1):500-518, 1926. - http://eudml.org/doc/174999

  • A. Katok and B. Hasselblatt. Introduction to the modern theory of dynamical systems, volume 54 of Encyclopedia of Mathematics and its Applications. Cambridge University Press, Cambridge, 1995. With a supplementary chapter by Katok and Leonardo Mendoza - https://doi.org/10.1017/CBO9780511809187

  • D. Kelmer. Arithmetic quantum unique ergodicity for symplectic linear maps of the multidimensional torus. Ann. of Math. (2), 171(2):815-879, 2010 - http://doi.org/10.4007/annals.2010.171.815

  • A.N. Kolmogorov. A new metric invariant of transient dynamical systems and automorphisms in lebesgue spaces. Dokl. Akad. Nauk SSSR, 119:861-864, 1958. - http://mi.mathnet.ru/eng/dan22922

  • A.N. Kolmogorov. Entropy per unit time as a metric invariant of automorphisms. Dokl. Akad. Nauk SSSR, 124:754-755, 1959. -

  • P. Kurlberg and Z. Rudnick. Hecke theory and equidistribution for the quantization of linear maps of the torus. Duke Math. Jour., 103(1):47-78, 2000 - http://dx.doi.org/10.1215/S0012-7094-00-10314-6

  • V.F. Lazutkin. KAM theory and semiclassical approximations to eigenfunctions, volume 24 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer-Verlag, Berlin, 1993. With an addendum by A. I. Snirel'man -

  • E. Le Masson and T. Sahlsten. Quantum ergodicity and Benjamini-Schramm convergence of hyperbolic surfaces. Duke Math. J., (18):3425-3460, 2017 - http://dx.doi.org/10.1215/00127094-2017-0027

  • G. Lebeau. A proof of a result of L. Boutet de Monvel. In Algebraic and Analytic Microlocal Analysis, volume 269 of Proceedings in Mathematics and Statistics, pages 541-574. Springer, 2018 - http://dx.doi.org/10.1007/978-3-030-01588-6_11

  • M. Ledoux. The concentration of measure phenomenon. Number 89 in Mathematical surveys and monographs. American Mathematical Soc., 2001 -

  • F. Ledrappier and L.-S. Young. The metric entropy of diffeomorphisms. I. Characterization of measures satisfying Pesin's entropy formula. Ann. of Math. (2), 122(3):509-539, 1985. - http://dx.doi.org/10.2307/1971328

  • S. Lester and Z. Rudnick. Small Scale Equidistribution of Eigenfunctions on the Torus. Comm. Math. Phys., 350(1):279-300, 2017. - http://dx.doi.org/10.1007/s00220-016-2734-4

  • E. Lindenstrauss. Invariant measures and arithmetic quantum unique ergodicity. Ann. of Math. (2), 163(1):165-219, 2006 - https://doi.org/10.4007/annals.2006.163.165

  • P.-L. Lions and T. Paul. Sur les mesures de Wigner. Rev. Mat. Iberoamericana, 9(3):553-618, 1993. - http://dx.doi.org/10.4171/RMI/143

  • C. Liverani. On contact Anosov flows. Ann. of Math. (2), 159(3):1275-1312, 2004. - https://doi.org/10.4007/annals.2004.159.1275

  • H. Maasen and J.B.M. Uffink. Generalized entropic uncertainty relations. Phys. Rev. Lett., 60(12):1103{1106, 1988 - https://doi.org/10.1103/PhysRevLett.60.1103

  • F. Macia. Some remarks on quantum limits on Zoll manifolds. Comm. Partial Differential Equations, 33(4-6):1137-1146, 2008 - http://dx.doi.org/10.1080/03605300802038601

  • F. Macia. High-frequency propagation for the Schrodinger equation on the torus. J. Funct. Anal., 258(3):933-955, 2010. - https://doi.org/10.1016/j.jfa.2009.09.020

  • F. Macia and G. Rivière. Concentration and Non Concentration for the Schrodinger Evolution on Zoll Manifolds. Comm. Math. Phys., 345(3):1019-1054, 2016. - https://doi.org/10.1007/s00220-015-2504-8 SMASH

  • F. Macia and G. Rivière. Observability and quantum limits for the Schrodinger equation on the sphere. 2017. Preprint arXiv:1702.02066. - https://arxiv.org/abs/1702.02066v1

  • J. Marklof and Z. Rudnick. Almost all eigenfunctions of a rational polygon are uniformly distributed. J. Spectr. Theory, 2(1):107-113, 2012 - http://dx.doi.org/10.4171/JST/23

  • S. Nonnenmacher and A. Voros. Chaotic eigenfunctions in phase space. Journal of Statistical Physics, 92(3-4):431-518, 1998 - https://doi.org/10.1023/A:1023080303171

  • S. Nonnenmacher and M. Zworski. Quantum decay rates in chaotic scattering. Acta Math., 203(2):149-233, 2009 - http://dx.doi.org/10.1007/s11511-009-0041-z

  • P.W. O'Connor and E.J. Heller. Quantum localization for a strongly classically chaotic system. Phys. Rev. Lett., 61:2288-2291, 1988 - http://dx.doi.org/10.1103/PhysRevLett.61.2288

  • I.C. Percival. Regular and irregular spectra of molecules. In Stochastic behavior in classical and quantum Hamiltonian systems (Volta Memorial Conf., Como, 1977), volume 93 of Lecture Notes in Phys., pages 259{282. Springer, Berlin-New York, 1979 - http://dx.doi.org/10.1007/BFb0021750

  • Y.B. Pesin. Dimension theory in dynamical systems. Chicago Lectures in Mathematics. University of Chicago Press, Chicago, IL, 1997. Contemporary views and applications -

  • G. Rivière. Entropy of semiclassical measures for nonpositively curved surfaces. Ann. Henri Poincaré, 11(6):1085-1116, 2010. - http://dx.doi.org/10.1007/s00023-010-0055-2

  • G. Rivière. Entropy of semiclassical measures in dimension 2. Duke Math. J., 155(2):271-336, 2010 - http://dx.doi.org/10.1215/00127094-2010-056

  • G. Rivière. Entropy of semiclassical measures for symplectic linear maps of the multidimensional torus. Int. Math. Res. Not. IMRN, (11):2396-2443, 2011 - https://doi.org/10.1093/imrn/rnq155

  • G. Rivière. Delocalization of slowly damped eigenmodes on Anosov manifolds. Comm. Math. Phys., 316(2):555-593, 2012 - http://dx.doi.org/10.1007/s00220-012-1588-7

  • G. Rivière. Remarks on quantum ergodicity. J. Mod. Dyn., 7(1):119-133, 2013 - http://dx.doi.org/10.3934/jmd.2013.7.119

  • G. Rivière. Eigenmodes of the damped wave equation and small hyperbolic subsets, with an appendix by S. Nonnenmacher and G. Rivière. Ann. Inst. Fourier (Grenoble), 64(3):1229-1267, 2014. - https://doi.org/10.5802/aif.2879

  • Z. Rudnick and P. Sarnak. The behaviour of eigenstates of arithmetic hyperbolic manifolds. Comm. Math. Phys., 161(1):195-213, 1994 - http://dx.doi.org/10.1007/BF02099418

  • D. Ruelle. An inequality for the entropy of differentiable maps. Bol. Soc. Brasil. Mat., 9(1):83-87, 1978. -

  • R.O. Ruggiero. Dynamics and global geometry of manifolds without conjugate points, volume 12 of Ensaios Matematicos [Mathematical Surveys]. Sociedade Brasileira de Matematica, Rio de Janeiro, 2007 - https://www.sbm.org.br/docs/ensaios-volumes/em_12.pdf

  • C. Shannon. A mathematical theory of communication. Bell Systems Technical Journal, 27:623-656, 1948 -

  • Y. Sinaï. On the concept of entropy for a dynamic system. Dokl. Akad. Nauk SSSR, 124:768-771, 1959. -

  • J. Sjostrand. Asymptotic distribution of eigenfrequencies for damped wave equations. Publ. Res. Inst. Math. Sci., 36(5):573-611, 2000 - https://doi.org/10.2977/prims/1195142811

  • A. I. Snirel'man. Ergodic properties of eigenfunctions. Uspehi Mat. Nauk, 29(6(180)):181-182, 1974 - http://mi.mathnet.ru/eng/umn4463

  • A. I. Snirel'man. Statistical properties of eigenfunctions. In Proceedings of the All-USSR School in Differential Equations with Innite Number of Independent Variables and in Dynamical Systems with Innitely Many Degrees of Freedom, May 1973. Armenian Academy of Sciences, Erevan, 1974 - http://math.mit.edu/dyatlov/les/2019/shnirelman.pdf.

  • C.D. Sogge. Concerning the Lp norm of spectral clusters for second-order elliptic operators on compact manifolds. J. Funct. Anal., 77(1):123-138, 1988 - https://doi.org/10.1016/0022-1236(88)90081-X

  • C.D. Sogge. Kakeya-Nikodym averages and Lp-norms of eigenfunctions. Tohoku Math. J. (2), 63(4):519-538, 2011. - http://dx.doi.org/10.2748/tmj/1325886279

  • C.D. Sogge. Hangzhou Lectures on Eigenfunctions of the Laplacian. Princeton University Press, Princeton, 2014 -

  • C.D. Sogge. Problems related to the concentration of eigenfunctions. 2015 - https://arxiv.org/abs/1510.07723v1

  • C.D. Sogge. Localized Lp-estimates of eigenfunctions: a note on an article of Hezari and Rivière. Adv. Math., 289:384-396, 2016. - https://doi.org/10.1016/j.aim.2015.11.035

  • K. Soundararajan. Quantum unique ergodicity for sl(2,Z/H. Ann. of. Math. (2), 172(2):1529-1538, 2010 - http://doi.org/10.4007/annals.2010.172.1529

  • L. Tartar. H-measures, a new approach for studying homogenisation, oscillations and concentration effects in partial dfferential equations. Proc. Roy. Soc. Edinburgh Sect. A, 115(3-4):193-230, 1990 - https://doi.org/10.1017/S0308210500020606

  • M. Taylor. Variations on quantum ergodic theorems. Potential Anal., 43(4):625{651, 2015 - http://dx.doi.org/10.1007/s11118-015-9489-y

  • J.A. Toth and S. Zelditch. Lp norms of eigenfunctions in the completely integrable case. Ann. Henri Poincaré, 4(2):343-368, 2003 - http://dx.doi.org/10.1007/s00023-003-0132-x

  • J.M. VanderKam.L∞ norms and quantum ergodicity on the sphere. Internat. Math. Res. Notices,(7):329-347, 1997 - https://doi.org/10.1155/S1073792897000238

  • A. Vasy and J. Wunsch. Semiclassical second microlocal propagation of regularity and integrable systems. J. Anal. Math., 108:119-157, 2009 - http://dx.doi.org/10.1007/s11854-009-0020-5

  • S. Vu Ngoc. Systemes Integrables Semi-Classiques: du Local au Global, volume 22 of Panoramas et Syntheses. SMF, 2006 -

  • P.Walters. An introduction to ergodic theory, volume 79 of Graduate Texts in Mathematics. Springer- Verlag, New York-Berlin, 1982 -

  • A. Weinstein. Asymptotics of eigenvalue clusters for the Laplacian plus a potential. Duke Math. J., 44(4):883-892, 1977 - http://dx.doi.org/10.1215/S0012-7094-77-04442-8

  • E. Wigner. On the quantum correction for thermodynamic equilibrium. Phys. Rev., 40:748-759, 1932 - http://dx.doi.org/10.1103/PhysRev.40.749

  • J. Wunsch. Spreading of Lagrangian regularity on rational invariant tori. Comm. Math. Phys., 279(2):487-496, 2008 - http://dx.doi.org/10.1007/s00220-008-0434-4

  • J. Wunsch. Non-concentration of quasimodes for integrable systems. Comm. Partial Dfferential Equations, 37(8):1430-1444, 2012 - https://doi.org/10.1080/03605302.2011.626102

  • S. Zelditch. Uniform distribution of eigenfunctions on compact hyperbolic surfaces. Duke Math. J., 55(4):919-941, 1987 - http://dx.doi.org/10.1215/S0012-7094-87-05546-3

  • S. Zelditch. Quantum ergodicity on the sphere. Comm. Math. Phys., 146(1):61-71, 1992 - https://projecteuclid.org/euclid.cmp/1104249975

  • S. Zelditch. On the rate of quantum ergodicity. I. Upper bounds. Comm. Math. Phys., 160(1):81-92,
    1994. - https://projecteuclid.org/euclid.cmp/1104269516

  • S. Zelditch. Maximally degenerate Laplacians. Ann. Inst. Fourier (Grenoble), 46(2):547-587, 199 - https://doi.org/10.5802/aif.1524

  • S. Zelditch. Fine structure of Zoll spectra. J. Funct. Anal., 143(2):415-460, 1997 - https://doi.org/10.1006/jfan.1996.2981

  • S. Zelditch. Note on quantum unique ergodicity. Proc. Amer. Math. Soc., 132(6):1869-1872, 2004 - http://dx.doi.org/10.1090/S0002-9939-03-07298-8

  • S. Zelditch. Complex zeros of real ergodic eigenfunctions. Inv. Math., 167(2):419{443, 2007 - http://dx.doi.org/10.1007/s00222-006-0024-z

  • S. Zelditch. Eigenfunctions and nodal sets. In Surveys in differential geometry. Geometry and topology, volume 18 of Surv. Differ. Geom., pages 237-308. Int. Press, Somerville, MA, 2013 -

  • S. Zelditch and M. Zworski. Ergodicity of eigenfunctions for ergodic billiards. Comm. Math. Phys., 175(3):673-682, 1996 - http://dx.doi.org/10.1007/BF02099513

  • O. Zoll. Ueber Flachen mit Scharen geschlossener geodatischer Linien. Math. Ann., 57(1):108-133,1903 - http://dx.doi.org/10.1007/BF01449019

  • M. Zworski. Semiclassical analysis, volume 138 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2012 -

  • A. Zygmund. On Fourier coefficients and transforms of functions of two variables. Studia Math., 50:189-201, 1974 - http://eudml.org/doc/217888



Imagette Video

Abstract

Bookmarks Report an error