En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Traffic flow models with non-local flux and extensions to networks

Bookmarks Report an error
Multi angle
Authors : Göttlich, Simone (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : We present a Godunov type numerical scheme for a class of scalar conservation laws with nonlocal flux arising for example in traffic flow modeling. The scheme delivers more accurate solutions than the widely used Lax-Friedrichs type scheme and also allows to show well-posedness of the model. In a second step, we consider the extension of the non-local traffic flow model to road networks by defining appropriate conditions at junctions. Based on the proposed numerical scheme we show some properties of the approximate solution and provide several numerical examples.

Keywords : non-local scalar conservation laws; Godunov scheme

MSC Codes :
35L65 - Conservation laws
65M12 - Stability and convergence of numerical methods (IVP of PDE)
90B20 - Traffic problems

Additional resources :
https://crowds2019.sciencesconf.org/data/pages/Crowds_book.pdf
https://www.cirm-math.fr/RepOrga/1927/Slides/Goettlich.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 25/06/2019
    Conference Date : 06/06/2019
    Subseries : Research talks
    arXiv category : Numerical Analysis ; Analysis of PDEs
    Mathematical Area(s) : Numerical Analysis & Scientific Computing ; PDE
    Format : MP4 (.mp4) - HD
    Video Time : 00:43:59
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-06-06_Gottlich.mp4

Information on the Event

Event Title : Foules : modèles et commande / Crowds: Models and Control
Event Organizers : Morancey, Morgan ; Piccoli, Benedetto ; Rossi, Francesco ; Wolfram, Marie-Thérèse
Dates : 03/06/2019 - 07/06/2019
Event Year : 2019
Event URL : https://conferences.cirm-math.fr/1927.html

Citation Data

DOI : 10.24350/CIRM.V.19534703
Cite this video as: Göttlich, Simone (2019). Traffic flow models with non-local flux and extensions to networks. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19534703
URI : http://dx.doi.org/10.24350/CIRM.V.19534703

See Also

Bibliography

  • AGGARWAL, Aekta, COLOMBO, Rinaldo M., et GOATIN, Paola. Nonlocal systems of conservation laws in several space dimensions. SIAM Journal on Numerical Analysis, 2015, vol. 53, no 2, p. 963-983. - https://doi.org/10.1137/140975255

  • COLOMBO, Maria, CRIPPA, Gianluca, et SPINOLO, Laura V. Blow-up of the total variation in the local limit of a nonlocal traffic model. arXiv preprint arXiv:1808.03529, 2018. - https://arxiv.org/abs/1808.03529#

  • CHIARELLO, Felisia Angela, FRIEDRICH, J., GOATIN, Paola, et al. A non-local traffic flow model for 1-to-1 junctions. 2019. - https://hal.inria.fr/hal-02142345

  • CHIARELLO, Felisia Angela et GOATIN, Paola. Global entropy weak solutions for general non-local traffic flow models with anisotropic kernel. ESAIM: Mathematical Modelling and Numerical Analysis, 2018, vol. 52, no 1, p. 163-180. - https://doi.org/10.1051/m2an/2017066

  • COCLITE, Giuseppe Maria, GARAVELLO, Mauro, et PICCOLI, Benedetto. Traffic flow on a road network. SIAM journal on mathematical analysis, 2005, vol. 36, no 6, p. 1862-1886. - https://doi.org/10.1137/S0036141004402683

  • FRIEDRICH, Jan, KOLB, Oliver, et GÖTTLICH, Simone. A Godunov type scheme for a class of LWR traffic flow models with non-local flux. arXiv preprint arXiv:1802.07484, 2018. - https://arxiv.org/abs/1802.07484

  • KARLSEN, Kenneth Hvistendahl et TOWERS, John D. Convergence of a Godunov scheme for conservation laws with a discontinuous flux lacking the crossing condition. Journal of Hyperbolic Differential Equations, 2017, vol. 14, no 04, p. 671-701. - https://doi.org/10.1142/S0219891617500229



Bookmarks Report an error