En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Understanding quadratic forms on lattices through generalised theta series

Bookmarks Report an error
Multi angle
Authors : Walling, Lynne (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Siegel introduced generalised theta series to study representation numbers of quadratic forms. Given an integral lattice $L$ with quadratic form $q$, Siegel's degree $n$ theta series attached to $L$ has a Fourier expansion supported on $n$-dimensional lattices, with Fourier coefficients that tells us how many times $L$ represents any given $n$-dimensional lattice. Siegel proved that this theta series is a type of automorphic form.
In this talk we explore how the theory of automorphic forms, together with the theory of quadratic forms, helps us understand these representation numbers. We reveal arithmetic relations between ”average” representation numbers (where we average over a genus), and finally we give an explicit formula for these average representation numbers in terms of the Fourier coefficients of Siegel Eisenstein series. In the case that $n = 1$ (meaning we are looking at how often $L$ represents an integer) this yields explicit numerical formulas for these average representation numbers.

Keywords : Siegel theta series; representation number of indefinite quadratic forms; Eisenstein series; nonanalytic modular form; quadratic forms; average representation numbers

MSC Codes :
11F27 - Theta series; Weil representation; theta correspondences
11F30 - Fourier coefficients of automorphic forms
11F46 - Siegel modular groups and their modular and automorphic forms

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 17/04/2019
    Conference Date : 28/03/2019
    Subseries : Research talks
    arXiv category : Number Theory
    Mathematical Area(s) : Number Theory
    Format : MP4 (.mp4) - HD
    Video Time : 00:45:07
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2019-03-28_Walling.mp4

Information on the Event

Event Title : Cohomology of arithmetic groups, lattices and number theory: geometric and computational viewpoint / Cohomologie des groupes arithmétiques, réseaux et théorie des nombres: géométries et calculs
Event Organizers : Bayer-Fluckiger, Eva ; Elbaz-Vincent, Philippe ; Ellis, Graham ; Gunnels, Paul
Dates : 25/03/2019 - 29/03/2019
Event Year : 2019
Event URL : https://conferences.cirm-math.fr/1995.html

Citation Data

DOI : 10.24350/CIRM.V.19509103
Cite this video as: Walling, Lynne (2019). Understanding quadratic forms on lattices through generalised theta series. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19509103
URI : http://dx.doi.org/10.24350/CIRM.V.19509103

See Also

Bibliography



Bookmarks Report an error