En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Random matrices, integrability, and number theory - Lecture 4

Bookmarks Report an error
Multi angle
Authors : Keating, Jonathan P. (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : I will give an overview of connections between Random Matrix Theory and Number Theory, in particular connections with the theory of the Riemann zeta-function and zeta functions defined in function fields. I will then discuss recent developments in which integrability plays an important role. These include the statistics of extreme values and connections with the theory of log-correlated Gaussian fields.

MSC Codes :
11M06 - $ \zeta (s)$ and $L(s, \chi)$
11Z05 - Miscellaneous applications of number theory
15B52 - Random matrices

Information on the Event

Event Title : Jean-Morlet chair - Research school: Coulomb gas, integrability and Painlevé equations / Chaire Jean-Morlet - École de recherche : Gaz de Coulomb, intégrabilité et équations de Painlevé
Event Organizers : Bufetov, Alexander ; Cafasso, Mattia ; Grava, Tamara
Dates : 11/03/2019 - 15/03/2019
Event Year : 2019
Event URL : https://www.chairejeanmorlet.com/2105.html

Citation Data

DOI : 10.24350/CIRM.V.19506203
Cite this video as: Keating, Jonathan P. (2019). Random matrices, integrability, and number theory - Lecture 4. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19506203
URI : http://dx.doi.org/10.24350/CIRM.V.19506203

See Also

Bibliography



Bookmarks Report an error