En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

De-biasing arbitrary convex regularizers and asymptotic normality

Bookmarks Report an error
Virtualconference
Authors : Bellec, Pierre C. (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : A new Central Limit Theorem (CLT) is developed for random variables of the form ξ=z⊤f(z)−divf(z) where z∼N(0,In).
The normal approximation is proved to hold when the squared norm of f(z) dominates the squared Frobenius norm of ∇f(z) in expectation.
Applications of this CLT are given for the asymptotic normality of de-biased estimators in linear regression with correlated design and convex penalty in the regime p/n→γ∈(0,∞). For the estimation of linear functions ⟨a,β⟩ of the unknown coefficient vector β, this analysis leads to asymptotic normality of the de-biased estimate for most normalized directions a0, where "most" is quantified in a precise sense. This asymptotic normality holds for any coercive convex penalty if γ<1 and for any strongly convex penalty if γ≥1. In particular the penalty needs not be separable or permutation invariant.

Keywords : M-estimators; convex regularization; asymptotic normality; confidence intervals; de-biasing

MSC Codes :

Additional resources :
https://www.cirm-math.fr/RepOrga/2146/Slides/Bellec_slides.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 15/06/2020
    Conference Date : 05/06/2020
    Subseries : Research talks
    arXiv category : Statistics Theory ; Computational Geometry
    Mathematical Area(s) : Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:46:32
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/ 2020-06-05_Bellec.mp4

Information on the Event

Event Title : Mathematical Methods of Modern Statistics 2 / Méthodes mathématiques en statistiques modernes 2
Event Organizers : Bogdan, Malgorzata ; Graczyk, Piotr ; Panloup, Fabien ; Proïa, Frédéric ; Roquain, Etienne
Dates : 15/06/2020 - 19/06/2020
Event Year : 2020
Event URL : https://www.cirm-math.com/cirm-virtual-...

Citation Data

DOI : 10.24350/CIRM.V.19640503
Cite this video as: Bellec, Pierre C. (2020). De-biasing arbitrary convex regularizers and asymptotic normality. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19640503
URI : http://dx.doi.org/10.24350/CIRM.V.19640503

See Also

Bibliography

  • BELLEC, Pierre C. et ZHANG, Cun-Hui. Second order Poincar\'e inequalities and de-biasing arbitrary convex regularizers when $ p/n\to\gamma$. arXiv preprint arXiv:1912.11943, 2019. - https://arxiv.org/abs/1912.11943

  • BELLEC, Pierre C. et ZHANG, Cun-Hui. De-biasing the lasso with degrees-of-freedom adjustment. arXiv preprint arXiv:1902.08885, 2019. - https://arxiv.org/abs/1902.08885



Bookmarks Report an error