En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Treatment effect estimation with missing attributes

Bookmarks Report an error
Virtualconference
Authors : Josse, Julie (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Inferring causal effects of a treatment or policy from observational data is central to many applications. However, state-of-the-art methods for causal inference suffer when covariates have missing values, which is ubiquitous in application.
Missing data greatly complicate causal analyses as they either require strong assumptions about the missing data generating mechanism or an adapted unconfoundedness hypothesis. In this talk, I will first provide a classification of existing methods according to the main underlying assumptions, which are based either on variants of the classical unconfoundedness assumption or relying on assumptions about the mechanism that generates the missing values. Then, I will present two recent contributions on this topic: (1) an extension of doubly robust estimators that allows handling of missing attributes, and (2) an approach to causal inference based on variational autoencoders adapted to incomplete data.
I will illustrate the topic an an observational medical database which has heterogeneous data and a multilevel structure to assess the impact of the administration of a treatment on survival.

Keywords : Causal inference; missing values; average treatment effect; double robust methods; generalized random forest; latent variables models

MSC Codes :
62H12 - Multivariate estimation
62N99 - None of the above but in this section
62P10 - Applications of statistics to biology and medical sciences

Additional resources :
https://www.cirm-math.fr/RepOrga/2146/Slides/Josse.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 15/06/2020
    Conference Date : 08/06/2020
    Subseries : Research talks
    arXiv category : Statistics Theory
    Mathematical Area(s) : Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:29:00
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2020-06-04_Josse.mp4

Information on the Event

Event Title : Mathematical Methods of Modern Statistics 2 / Méthodes mathématiques en statistiques modernes 2
Event Organizers : Bogdan, Malgorzata ; Graczyk, Piotr ; Panloup, Fabien ; Proïa, Frédéric ; Roquain, Etienne
Dates : 15/06/2020 - 19/06/2020
Event Year : 2020
Event URL : https://www.cirm-math.com/cirm-virtual-...

Citation Data

DOI : 10.24350/CIRM.V.19641503
Cite this video as: Josse, Julie (2020). Treatment effect estimation with missing attributes. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19641503
URI : http://dx.doi.org/10.24350/CIRM.V.19641503

See Also

Bibliography

  • MAYER, Imke, JOSSE, Julie, RAIMUNDO, Félix, et al. MissDeepCausal: Causal Inference from Incomplete Data Using Deep Latent Variable Models. arXiv preprint arXiv:2002.10837, 2020. - https://arxiv.org/abs/2002.10837

  • MAYER, Imke, WAGER, Stefan, GAUSS, Tobias, et al. Doubly robust treatment effect estimation with missing attributes. arXiv preprint arXiv:1910.10624, 2019. - https://arxiv.org/abs/1910.10624

  • JOSSE, Julie, PROST, Nicolas, SCORNET, Erwan, et al. On the consistency of supervised learning with missing values. arXiv preprint arXiv:1902.06931, 2019. - https://arxiv.org/abs/1902.06931



Imagette Video

Bookmarks Report an error