En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Detecting seasonality changes in multivariate extremes from climatological time series

Bookmarks Report an error
Multi angle
Authors : Naveau, Philippe (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Many effects of climate change seem to be reflected not in the mean temperatures, precipitation or other environmental variables, but rather in the frequency and severity of the extreme events in the distributional tails. The most serious climate-related disasters are caused by compound events that result from an unfortunate combination of several variables. Detecting changes in size or frequency of such compound events requires a statistical methodology that efficiently uses the largest observations in the sample.
We propose a simple, non-parametric test that decides whether two multivariate distributions exhibit the same tail behavior. The test is based on the entropy, namely Kullback–Leibler divergence, between exceedances over a high threshold of the two multivariate random vectors. We study the properties of the test and further explore its effectiveness for finite sample sizes.
Our main application is the analysis of daily heavy rainfall times series in France (1976 -2015). Our goal in this application is to detect if multivariate extremal dependence structure in heavy rainfall change according to seasons and regions.

MSC Codes :

Additional resources :
https://www.cirm-math.fr/RepOrga/2233/Slides/NaveauLumini.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 09/10/2020
    Conference Date : 18/09/2020
    Subseries : Research talks
    arXiv category : Statistics Theory
    Mathematical Area(s) : Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:40:16
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2020-09-18_Naveau.mp4

Information on the Event

Event Title : New Results on Time Series and their Statistical Applications / Séries chronologiques: nouveaux résultats et applications statistiques
Event Organizers : Bardet, Jean-Marc ; Eckley, Idris ; Fokianos, Konstantinos ; Neumann, Michael H. ; Philippe, Anne
Dates : 14/09/2020 - 19/09/2020
Event Year : 2020
Event URL : https://conferences.cirm-math.fr/2233.html

Citation Data

DOI : 10.24350/CIRM.V.19654903
Cite this video as: Naveau, Philippe (2020). Detecting seasonality changes in multivariate extremes from climatological time series. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19654903
URI : http://dx.doi.org/10.24350/CIRM.V.19654903

See Also

Bibliography



Bookmarks Report an error