En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Geometric structures in 2D Navier-Stokes flows

Bookmarks Report an error
Multi angle
Authors : Brandolese, Lorenzo (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Geometric structures naturally appear in fluid motions. One of the best known examples is Saturn's Hexagon, the huge cloud pattern at the level of Saturn's north pole, remarkable both for the regularity of its shape and its stability during the past decades. In this paper we will address the spontaneous formation of hexagonal structures in planar viscous flows, in the classical setting of Leray's solutions of the Navier–Stokes equations. Our analysis also makes evidence of the isotropic character of the energy density of the fluid for sufficiently localized 2D flows in the far field: it implies, in particular, that fluid particles of such flows are nowhere at rest at large distances.

MSC Codes :
35Q30 - Stokes and Navier-Stokes equations
76D05 - Navier-Stokes equations (fluid dynamics)

Information on the Event

Event Title : Vorticity, Rotation and Symmetry (V) – Global Results and Nonlocal Phenomena / Vorticité, rotation et symétrie (V) – Résultats globaux et phénomènes non locaux
Event Organizers : Danchin, Raphaël ; Farwig, Reinhard ; Necasova, Sarka ; Neustupa, Jiri
Dates : 26/10/2020 - 30/10/2020
Event Year : 2020
Event URL : https://conferences.cirm-math.fr/2166.html

Citation Data

DOI : 10.24350/CIRM.V.19678603
Cite this video as: Brandolese, Lorenzo (2020). Geometric structures in 2D Navier-Stokes flows. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19678603
URI : http://dx.doi.org/10.24350/CIRM.V.19678603

See Also

Bibliography



Bookmarks Report an error