En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

A new stability and convergence proof of the Fourier-Galerkin spectral method for the spatially homogeneous Boltzmann equation

Bookmarks Report an error
Virtualconference
Authors : Hu, Jingwei (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Numerical approximation of the Boltzmann equation is a challenging problem due to its high-dimensional, nonlocal, and nonlinear collision integral. Over the past decade, the Fourier-Galerkin spectral method has become a popular deterministic method for solving the Boltzmann equation, manifested by its high accuracy and potential of being further accelerated by the fast Fourier transform. Albeit its practical success, the stability of the method is only recently proved by Filbet, F. & Mouhot, C. in [Trans.Amer.Math.Soc. 363, no. 4 (2011): 1947-1980.] by utilizing the”spreading” property of the collision operator. In this work, we provide anew proof based on a careful L2 estimate of the negative part of the solution. We also discuss the applicability of the result to various initial data, including both continuous and discontinuous functions. This is joint work with Kunlun Qi and Tong Yang.

Keywords : Boltzmann equation; Fourier-Galerkin spectral method; well-posedness; stability; convergence; discontinuous; filter

MSC Codes :
35Q20 - Boltzmann equations
45G10 - Other nonlinear integral equations
65M12 - Stability and convergence of numerical methods (IVP of PDE)
65M70 - Spectral, collocation and related methods

Additional resources :
https://www.cirm-math.fr/RepOrga/2355/Slides/slide_Jingwei_HU.pdf

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 09/04/2021
    Conference Date : 22/03/2021
    Subseries : Research talks
    arXiv category : Analysis of PDEs ; Numerical Analysis ; Mathematical Physics
    Mathematical Area(s) : Numerical Analysis & Scientific Computing ; PDE
    Format : MP4 (.mp4) - HD
    Video Time : 00:42:38
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2021-03-22_Hu.mp4

Information on the Event

Event Title : Jean Morlet Chair 2021- Conference: Kinetic Equations: From Modeling Computation to Analysis / Chaire Jean-Morlet 2021 - Conférence : Equations cinétiques : Modélisation, Simulation et Analyse
Event Organizers : Bostan, Mihaï ; Jin, Shi ; Mehrenberger, Michel ; Montibeller, Celine
Dates : 22/03/2021 - 26/03/2021
Event Year : 2021
Event URL : https://www.chairejeanmorlet.com/2355.html

Citation Data

DOI : 10.24350/CIRM.V.19734303
Cite this video as: Hu, Jingwei (2021). A new stability and convergence proof of the Fourier-Galerkin spectral method for the spatially homogeneous Boltzmann equation. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19734303
URI : http://dx.doi.org/10.24350/CIRM.V.19734303

See Also

Bibliography

  • FILBET, Francis et MOUHOT, Clément. Analysis of spectral methods for the homogeneous Boltzmann equation. Transactions of the american mathematical society, 2011, vol. 363, no 4, p. 1947-1980. - http://dx.doi.org/10.1090/S0002-9947-2010-05303-6

  • HU, Jingwei, QI, Kunlun, et YANG, Tong. A New Stability and Convergence Proof of the Fourier--Galerkin Spectral Method for the Spatially Homogeneous Boltzmann Equation. SIAM Journal on Numerical Analysis, 2021, vol. 59, no 2, p. 613-633. - https://doi.org/10.1137/20M1351813



Bookmarks Report an error