En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Entire functions with Cantor bouquet Julia sets

Bookmarks Report an error
Virtualconference
Authors : Pardo-Simon, Leticia (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : A transcendental entire function with bounded singular set that is hyperbolic and has a unique Fatou component is said to be of disjoint type. The Julia set of any disjoint-type function of finite order is known to be a collection of curves that escape to infinity and form a Cantor bouquet, i.e., a subset of $\mathbb{C}$ ambiently homeomorphic to a straight brush. We show that there exists $f$ of disjoint type whose Julia set $J(f)$ is a collection of escaping curves, but $J(f)$ is not a Cantor bouquet. On the other hand, we prove that if $f$ of disjoint type and $J(f)$ contains an absorbing Cantor bouquet, that is, a Cantor bouquet to which all escaping points are eventually mapped, then $J(f)$ must be a Cantor bouquet. This is joint work with L. Rempe.

Keywords : Cantor bouquet; transcendental entire maps; Julia set

MSC Codes :
30D05 - Functional equations in the complex domain, iteration and composition of analytic functions
37F10 - Dynamics of complex polynomials, rational maps, entire and meromorphic functions; Fatou and Julia sets
54F15 - Continua and generalizations
54H20 - Topological dynamics, See also {28Dxx, 34C35, 58Fxx}

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 02/11/2021
    Conference Date : 20/09/2021
    Subseries : Research talks
    arXiv category : Dynamical Systems
    Mathematical Area(s) : Dynamical Systems & ODE ; Topology
    Format : MP4 (.mp4) - HD
    Video Time : 00:27:20
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2021-09-20_Pardo-Simon.mp4

Information on the Event

Event Title : Advancing Bridges in Complex Dynamics / Avancer les connections dans la dynamique complexe
Event Organizers : Benini, Anna Miriam ; Drach, Kostiantyn ; Dudko, Dzmitry ; Hlushchanka, Mikhail ; Schleicher, Dierk
Dates : 20/09/2021 - 24/09/2021
Event Year : 2021
Event URL : https://conferences.cirm-math.fr/2546.html

Citation Data

DOI : 10.24350/CIRM.V.19814303
Cite this video as: Pardo-Simon, Leticia (2021). Entire functions with Cantor bouquet Julia sets. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19814303
URI : http://dx.doi.org/10.24350/CIRM.V.19814303

See Also

Bibliography



Bookmarks Report an error