Authors : Grellier, Sandrine (Author of the conference)
CIRM (Publisher )
Abstract :
Patrick Gérard and I introduced the cubic Szegö equation around ten years ago as a toy model of a totally non dispersive degenerate Hamiltonian equation. Despite of the fact that it is a complete integrable system, we proved that this equation develops some cascades phenomena. Namely, for a dense set of smooth initial data, the Szegö solutions have unbounded high Sobolev trajectories, detecting transfer of energy from low to high frequencies. However, this dense set has empty interior and a lot of questions remain opened to understand turbulence phenomena. Among others, we would like to understand how interactions of Fourier coefficients interfere on it. In a recent work, Biasi and Evnin explore the phenomenon of turbulence on a one parameter family of equations which goes from the cubic Szegö equation to what they call the 'truncated Szegö equation'. In this latter, most of the Fourier mode couplings are eliminated. However, they prove the existence of unbounded trajectories for simple rational initial data. In this talk, I will explain how, paradoxically, the turbulence phenomena may be promoted by adding a damping term. Those results are closely related to an inverse spectral theorem we proved on the Hankel operators.
Keywords : integrable Hamiltonian system; damping; turbulence or cascades phenomenon; Hankel operator; spectral theory
MSC Codes :
35B40
- Asymptotic behavior of solutions of PDE
47B35
- Toeplitz operators, Hankel operators, Wiener-Hopf operators
76F20
- Turbulence via chaos techniques
Film maker : Hennenfent, Guillaume
Language : English
Available date : 03/01/2022
Conference Date : 29/11/2021
Subseries : Research talks
arXiv category : Analysis of PDEs ; Classical Analysis and ODEs ; General Topology
Mathematical Area(s) : Analysis and its Applications ; Dynamical Systems & ODE ; PDE
Format : MP4 (.mp4) - HD
Video Time : 01:01:17
Targeted Audience : Researchers
Download : https://videos.cirm-math.fr/2021-11-29_Grellier.mp4
|
Event Title : Frontiers of Operator Theory / Frontières de la théorie des opérateurs Event Organizers : Badea, Catalin ; Bayart, Frédéric ; Gallardo-Gutiérrez, Eva A. ; Grivaux, Sophie ; Lefèvre, Pascal Dates : 29/11/2021 - 03/12/2021
Event Year : 2021
Event URL : https://conferences.cirm-math.fr/2388.html
DOI : 10.24350/CIRM.V.19855703
Cite this video as:
Grellier, Sandrine (2021). Turbulent cascades for a family of damped Szegö equations. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19855703
URI : http://dx.doi.org/10.24350/CIRM.V.19855703
|
See Also
Bibliography
- GERARD, Patrick et GRELLIER, Sandrine. On a damped Szego equation (with an appendix in collaboration with Christian Klein). SIAM Journal on Mathematical Analysis, 2020, vol. 52, no 5, p. 4391-4420. - https://doi.org/10.1137/19M1299189
- GÉRARD, Patrick, GRELLIER, Sandrine, et HE, Zihui. Turbulent cascades for a family of damped Szeg\" o equations. arXiv preprint arXiv:2111.05247, 2021. - https://arxiv.org/abs/2111.05247