En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Turbulent cascades for a family of damped Szegö equations

Bookmarks Report an error
Multi angle
Authors : Grellier, Sandrine (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Patrick Gérard and I introduced the cubic Szegö equation around ten years ago as a toy model of a totally non dispersive degenerate Hamiltonian equation. Despite of the fact that it is a complete integrable system, we proved that this equation develops some cascades phenomena. Namely, for a dense set of smooth initial data, the Szegö solutions have unbounded high Sobolev trajectories, detecting transfer of energy from low to high frequencies. However, this dense set has empty interior and a lot of questions remain opened to understand turbulence phenomena. Among others, we would like to understand how interactions of Fourier coefficients interfere on it. In a recent work, Biasi and Evnin explore the phenomenon of turbulence on a one parameter family of equations which goes from the cubic Szegö equation to what they call the 'truncated Szegö equation'. In this latter, most of the Fourier mode couplings are eliminated. However, they prove the existence of unbounded trajectories for simple rational initial data. In this talk, I will explain how, paradoxically, the turbulence phenomena may be promoted by adding a damping term. Those results are closely related to an inverse spectral theorem we proved on the Hankel operators.

Keywords : integrable Hamiltonian system; damping; turbulence or cascades phenomenon; Hankel operator; spectral theory

MSC Codes :
35B40 - Asymptotic behavior of solutions of PDE
47B35 - Toeplitz operators, Hankel operators, Wiener-Hopf operators
76F20 - Turbulence via chaos techniques

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 03/01/2022
    Conference Date : 29/11/2021
    Subseries : Research talks
    arXiv category : Analysis of PDEs ; Classical Analysis and ODEs ; General Topology
    Mathematical Area(s) : Analysis and its Applications ; Dynamical Systems & ODE ; PDE
    Format : MP4 (.mp4) - HD
    Video Time : 01:01:17
    Targeted Audience : Researchers
    Download : https://videos.cirm-math.fr/2021-11-29_Grellier.mp4

Information on the Event

Event Title : Frontiers of Operator Theory / Frontières de la théorie des opérateurs
Event Organizers : Badea, Catalin ; Bayart, Frédéric ; Gallardo-Gutiérrez, Eva A. ; Grivaux, Sophie ; Lefèvre, Pascal
Dates : 29/11/2021 - 03/12/2021
Event Year : 2021
Event URL : https://conferences.cirm-math.fr/2388.html

Citation Data

DOI : 10.24350/CIRM.V.19855703
Cite this video as: Grellier, Sandrine (2021). Turbulent cascades for a family of damped Szegö equations. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.19855703
URI : http://dx.doi.org/10.24350/CIRM.V.19855703

See Also

Bibliography

  • GERARD, Patrick et GRELLIER, Sandrine. On a damped Szego equation (with an appendix in collaboration with Christian Klein). SIAM Journal on Mathematical Analysis, 2020, vol. 52, no 5, p. 4391-4420. - https://doi.org/10.1137/19M1299189

  • GÉRARD, Patrick, GRELLIER, Sandrine, et HE, Zihui. Turbulent cascades for a family of damped Szeg\" o equations. arXiv preprint arXiv:2111.05247, 2021. - https://arxiv.org/abs/2111.05247



Bookmarks Report an error