En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Typicality and entropy of processes on infinite trees

Bookmarks Report an error
Multi angle
Authors : Backhausz, Agnes (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : We consider a special family of invariant random processes on the infinite d-regular tree, which is closely related to random d-regular graphs, and helps understanding the structure of these finite objects. By using different notions of entropy and finding inequalities between these quantities, we present a sufficient condition for a process to be typical, that is, to be the weak local limit of functions on the vertices of a randomly chosen d-regular graph (with fixed d, and the number of vertices tending to infinity). Our results are based on invariant couplings of the process with another copy of itself. The arguments can also be extended to processes on unimodular Galton-Watson trees. In the talk we present the notion of typicality, the entropy inequalities that we use and the sufficient conditions mentioned above. Joint work with Charles Bordenave and Balázs Szegedy.

Keywords : infinite trees; invariant process; sofic entropy

MSC Codes :
05C80 - Random graphs
28D20 - Entropy and other invariants
37A35 - Entropy and other invariants, isomorphism, classification

    Information on the Video

    Film maker : Petit, Jean
    Language : English
    Available date : 09/06/2023
    Conference Date : 22/05/2023
    Subseries : Research talks
    arXiv category : Probability
    Mathematical Area(s) : Probability & Statistics
    Format : MP4 (.mp4) - HD
    Video Time : 00:49:39
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2023-05-22_Backhausz.mp4

Information on the Event

Event Title : Measured Group Theory, Stochastic Processes on Groups and Borel Combinatorics / Théorie mesurée des groupes, processus stochastiques sur les groupes et combinatoire Borélienne
Event Organizers : Abért, Miklós ; Gaboriau, Damien ; Tserunyan, Anush ; Virág, Bálint
Dates : 22/05/2023 - 26/05/2023
Event Year : 2023
Event URL : https://conferences.cirm-math.fr/2172.html

Citation Data

DOI : 10.24350/CIRM.V.20048403
Cite this video as: Backhausz, Agnes (2023). Typicality and entropy of processes on infinite trees. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20048403
URI : http://dx.doi.org/10.24350/CIRM.V.20048403

See Also

Bibliography

  • BACKHAUSZ, Agnes, BORDENAVE, Charles, et SZEGEDY, Balázs. Typicality and entropy of processes on infinite trees. In : Annales de l'Institut Henri Poincare (B) Probabilites et statistiques. Institut Henri Poincaré, 2022. p. 1959-1980. - http://dx.doi.org/10.1214/21-AIHP1233

  • BACKHAUSZ, Agnes et SZEGEDY, Balázs. On large‐girth regular graphs and random processes on trees. Random Structures & Algorithms, 2018, vol. 53, no 3, p. 389-416. - https://doi.org/10.1002/rsa.20769

  • NAM, Danny, SLY, Allan, et ZHANG, Lingfu. Ising model on trees and factors of IID. Communications in Mathematical Physics, 2022, p. 1-38. - http://dx.doi.org/10.1007/s00220-021-04260-2

  • RAHMAN, Mustazee et VIRAG, Bálint. Local algorithms for independent sets are half-optimal. Ann. Probab. 2017. 45 (3) 1543 - 1577 - http://dx.doi.org/10.1214/16-AOP1094



Imagette Video

Bookmarks Report an error