En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

The model theory of Hardy fields and linear differential equations

Bookmarks Report an error
Multi angle
Authors : Aschenbrenner, Matthias (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Hardy fields form a natural domain for a 'tame' part of asymptotic analysis. In this talk I will explain how a recent theorem which permits the transfer of statements concerning algebraic differential equations between Hardy fields and related structures yields applications to some classical linear differential equations. (Joint work with L. van den Driesand J. van der Hoeven.)

Keywords : Hardy fields; algebraic differential equations; model theory

MSC Codes :
03C64 - Model theory of ordered structures; o-minimality
12J25 - Non-Archimedean valued fields, See also {30G06, 32P05, 46S10, 47S10}
34E05 - Asymptotic expansions

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 23/06/2023
    Conference Date : 02/06/2023
    Subseries : Research talks
    arXiv category : Logic ; Classical Analysis and ODEs ; Dynamical Systems
    Mathematical Area(s) : Algebra ; Analysis and its Applications ; Dynamical Systems & ODE ; Logic and Foundations
    Format : MP4 (.mp4) - HD
    Video Time : 01:07:38
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2023_06-02_Aschenbrenner.mp4

Information on the Event

Event Title : Model theory of valued fields / Théorie des modèles des corps valués
Event Organizers : Chatzidakis, Zoé ; Jahnke, Franziska ; Rideau-Kikuchi, Silvain
Dates : 29/05/2023 - 02/06/2023
Event Year : 2023
Event URL : https://conferences.cirm-math.fr/2761.html

Citation Data

DOI : 10.24350/CIRM.V.20050303
Cite this video as: Aschenbrenner, Matthias (2023). The model theory of Hardy fields and linear differential equations. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20050303
URI : http://dx.doi.org/10.24350/CIRM.V.20050303

See Also

Bibliography



Imagette Video

Bookmarks Report an error