En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Linear and nonlinear schemes for forward model reduction and inverse problems - Lecture 1

Bookmarks Report an error
Multi angle
Authors : Mula Hernandez, Olga (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Parametric PDEs arise in key applications ranging from parameter optimization, inverse state estimation, to uncertainty quantification. Accurately solving these tasks requires an efficient treatment of the resulting sets of parametric PDE solutions that are generated when parameters vary in a certain range. These solution sets are difficult to handle since their are embedded in infinite dimensional spaces, and present a complex structure. They need to be approximated with numerically efficient reduction techniques, usually called Model Order Reduction methods. The techniques need to be adapted both to the nature of the PDE, and to the given application task. In this course, we will give an overview of linear and nonlinear model order reduction methods when applied to forward and inverse problems. We will particularly emphasize on the role played by nonlinear approximation and geometrical PDE properties to address classical bottlenecks.

Keywords : model order reduction; inverse problems; approximation theory

MSC Codes :
65D99 - None of the above but in this section
65N21 - Inverse problems

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 04/08/2023
    Conference Date : 17/07/2023
    Subseries : Research School
    arXiv category : Machine Learning
    Mathematical Area(s) : Analysis and its Applications ; Numerical Analysis & Scientific Computing ; PDE
    Format : MP4 (.mp4) - HD
    Video Time : 01:21:40
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2023-07-17_Mula_1.mp4

Information on the Event

Event Title : CEMRACS 2023: Scientific Machine Learning / CEMRACS 2023: Apprentissage automatique scientifique
Event Organizers : Auroux, Didier ; Campos Pinto, Martin ; Després, Bruno ; Dolean, Victorita ; Frénod, Emmanuel ; Lanteri, Stéphane ; Michel-Dansac, Victor
Dates : 17/07/2023 - 21/07/2023
Event Year : 2023
Event URL : https://conferences.cirm-math.fr/2904.html

Citation Data

DOI : 10.24350/CIRM.V.20071103
Cite this video as: Mula Hernandez, Olga (2023). Linear and nonlinear schemes for forward model reduction and inverse problems - Lecture 1. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20071103
URI : http://dx.doi.org/10.24350/CIRM.V.20071103

See Also

Bibliography



Imagette Video

Bookmarks Report an error