En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Minimal torsion curves in geometric isogeny classes

Bookmarks Report an error
Multi angle
Authors : Bourdon, Abbey (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : Let $E / \mathbb{Q}$ be a non-CM elliptic curve and let $\mathcal{E}$ denote the collection of all elliptic curves geometrically isogenous to $E$. That is, for every $E^{\prime} \in \mathcal{E}$, there exists an isogeny $\varphi: E \rightarrow E^{\prime}$ defined over $\overline{\mathbb{Q}}$. Motivated by ties to Serre's Uniformity Conjecture, we will discuss the problem of identifying minimal torsion curves in $\mathcal{E}$, which are elliptic curves $E^{\prime} \in \mathcal{E}$ attaining a point of prime-power order in least possible degree. Using recent classification results of Rouse, Sutherland, and Zureick-Brown, we obtain an answer to this question in many cases, including a complete characterization for points of odd degree.

This is joint work with Nina Ryalls and Lori Watson.

Keywords : elliptic curves; Galois representations; modular curves

MSC Codes :
11G05 - Elliptic curves over global fields
14G35 - Modular and Shimura varieties

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 13/03/2023
    Conference Date : 02/03/2023
    Subseries : Research talks
    arXiv category : Number Theory
    Mathematical Area(s) : Number Theory
    Format : MP4 (.mp4) - HD
    Video Time : 00:55:41
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2023-03-02_Bourdon.mp4

Information on the Event

Event Title : COUNT - Computations and their Uses in Number Theory / Les calculs et leurs utilisations en théorie des nombres
Event Organizers : Anni, Samuele ; Allombert, Bill ; Balakrishnan, Jennifer ; Bruin, Peter ; Kilicer, Pinar ; Streng, Marco
Dates : 27/02/2023 - 03/03/2023
Event Year : 2023
Event URL : https://conferences.cirm-math.fr/2805.html

Citation Data

DOI : 10.24350/CIRM.V.20006603
Cite this video as: Bourdon, Abbey (2023). Minimal torsion curves in geometric isogeny classes. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20006603
URI : http://dx.doi.org/10.24350/CIRM.V.20006603

See Also

Bibliography



Bookmarks Report an error