En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Tutorial on cellular automata - lecture 2

Bookmarks Report an error
Multi angle
Authors : Ollinger, Nicolas (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : This tutorial surveys computational aspects of cellular automata, a discrete dynamical model introduced by S. Ulam and J. von Neumann in the late 40s: a regular grid of finite state cells evolving synchronously according to a common local rule described by a finite automaton.

Formally, a cellular automaton is a tuple $(d, S, N, f)$ where $d \in \mathbb{N}$ is the dimension of the cellular space, $S$ is the finite set of states, $N \subseteq_{\text {finite }} \mathbb{Z}^d$ is the finite neighborhood and $f: S^N \rightarrow S$ is the local rule of the cellular automaton.

A configuration $c \in S^{\mathbb{Z}^d}$ is a coloring of the cellular space by states.

The global transition function $G: S^{\mathbb{Z}^d} \rightarrow S^{\mathbb{Z}^d}$ applies $f$ uniformly according to $N$, i.e. for every configuration $c \in S^{\mathbb{Z}^d}$ and every position $z \in \mathbb{Z}^d$ it holds
$$G(c)(z)=f\left(c\left(z+v_1\right), \ldots, c\left(z+v_m\right)\right) \quad \text { where } N=\left\{v_1, \ldots, v_m\right\} .$$
A space-time diagram $\Delta \in S^{\mathbb{Z}^d \times \mathbb{N}}$ is obtained by piling successive configurations of an orbit, i.e. for every time step $t \in \mathbb{N}$ it holds $\Delta_{t+1}=G\left(\Delta_t\right)$.

Computing inside the cellular space: The first part of the tutorial considers cellular automata as a universal model of computation. Several notions of universality are discussed: boolean circuit simulation, Turing universality, intrinsic universality. Special abilities of cellular automata as a model of massive parallelism are then investigated.

Computing properties of cellular automata: The second part of the tutorial considers properties of cellular automata and their computation. De Bruijn diagrams and associated regular languages are introduced as tools to decide injectivity and surjectivity of the global transition function in the one-dimensional case. Both immediate and dynamical properties are introduced, in particular the notion of limit set.

Computation and reduction: undecidability results: The last part of the tutorial considers computing by reduction to establish undecidability results on some properties of cellular automata: injectivity and surjectivity of the global transition function in higher dimensions, nilpotency and intrinsic universality in every dimension, a Rice's theorem for limit sets.

Keywords : cellular automata; models of computation; decision problems; undecidability

MSC Codes :
37B10 - Symbolic dynamics
37B15 - Cellular automata
68Q05 - Models of computation (Turing machines, etc.)
68Q45 - Formal languages and automata
68Q80 - Cellular automata (theory of computing)

    Information on the Video

    Film maker : Hennenfent, Guillaume
    Language : English
    Available date : 19/02/2024
    Conference Date : 02/02/2024
    Subseries : Research School
    arXiv category : Formal Languages and Automata Theory ; Discrete Mathematics ; Dynamical Systems
    Mathematical Area(s) : Computer Science ; Dynamical Systems & ODE
    Format : MP4 (.mp4) - HD
    Video Time : 01:31:37
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-02-02_Ollinger_part2.mp4

Information on the Event

Event Title : Research School in Discrete Mathematics and Computer Science / École de recherche en mathématiques discrètes et informatique - WEEK 1
Event Organizers : Cassaigne, Julien ; Chalopin, Jérémie ; Chepoi, Victor ; Guillon, Pierre ; Moutot, Etienne ; Theyssier, Guillaume
Dates : 29/01/2024 - 02/02/2024
Event Year : 2024
Event URL : https://conferences.cirm-math.fr/3148.html

Citation Data

DOI : 10.24350/CIRM.V.20136903
Cite this video as: Ollinger, Nicolas (2024). Tutorial on cellular automata - lecture 2. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20136903
URI : http://dx.doi.org/10.24350/CIRM.V.20136903

See Also

Bibliography

  • DELORME, Marianne. An introduction to cellular automata: some basic definitions and concepts. In : Cellular automata: a parallel model. Dordrecht : Springer Netherlands, 1999. p. 5-49. - http://dx.doi.org/10.1007/978-94-015-9153-9_1

  • KARI, Jarkko. Theory of cellular automata: A survey. Theoretical computer science, 2005, vol. 334, no 1-3, p. 3-33. - https://doi.org/10.1016/j.tcs.2004.11.021

  • BÄCK, Thomas, KOK, Joost N., et ROZENBERG, G. Handbook of natural computing. Springer, Heidelberg, 2012. -



Imagette Video

Bookmarks Report an error