En poursuivant votre navigation sur ce site, vous acceptez l'utilisation d'un simple cookie d'identification. Aucune autre exploitation n'est faite de ce cookie. OK
1

Automorphisms of rigid geometric structures à la Zimmer–Gromov

Bookmarks Report an error
Multi angle
Authors : Melnick, Karin (Author of the conference)
CIRM (Publisher )

Loading the player...

Abstract : This talk begins with examples of rigid and non-rigid geometric structures, followed by an in-depth discussion of the Fundamental Theorem of Riemannian Geometry, on existence and uniqueness of a torsion-free connection compatible with a Riemannian metric. This result is interpreted as giving a framing on the orthonormal frame bundle uniquely determined by the metric. It is seen to be a consequence of the vanishing of the first prolongation of the orthogonal Lie algebra.

Keywords : Levi-Civita connection; G-structure; G-structure of finite type

MSC Codes :
22F05 - General theory of group and pseudogroup actions
53B05 - Linear and affine connections
53B20 - Local Riemannian geometry

    Information on the Video

    Film maker : Recanzone, Luca
    Language : English
    Available date : 07/05/2024
    Conference Date : 16/04/2024
    Subseries : Research School
    arXiv category : Differential Geometry
    Mathematical Area(s) : Geometry ; Topology
    Format : MP4 (.mp4) - HD
    Video Time : 00:58:35
    Targeted Audience : Researchers ; Graduate Students ; Doctoral Students, Post-Doctoral Students
    Download : https://videos.cirm-math.fr/2024-04-16_Melnick.mp4

Information on the Event

Event Title : Group Actions and Rigidity: Around the Zimmer Program / Actions de Groupes et Rigidité : Autour du programme de Zimmer
Event Organizers : Brown, Aaron ; Fisher, David ; Mann, Kathryn ; Pecastaing, Vincent ; Spatzier, Ralf
Dates : 15/04/2024 - 19/04/2024
Event Year : 2024
Event URL : https://conferences.cirm-math.fr/2968.html

Citation Data

DOI : 10.24350/CIRM.V.20159403
Cite this video as: Melnick, Karin (2024). Automorphisms of rigid geometric structures à la Zimmer–Gromov. CIRM. Audiovisual resource. doi:10.24350/CIRM.V.20159403
URI : http://dx.doi.org/10.24350/CIRM.V.20159403

See Also

Bibliography



Bookmarks Report an error